## И З В Е С Т И Я томского ордена трудового красного знамени политехнического института имени С. М. КИРОВА

Том 168

1969

# МОДЕЛИРОВАНИЕ НА АНАЛОГОВЫХ ВЫЧИСЛИТЕЛЬНЫХ МАШИНАХ (АВМ) ИНТЕГРАЛОВ С ПЕРЕМЕННЫМИ ПРЕДЕЛАМИ

### В. В. ЦЫГАНКОВ

#### (Представлена научным семинаром вычислительной лаборатории ТПИ)

Для исследования систем управления широкое применение нашли ABM. При этом задача заключается в моделировании объекта управления и регулятора. Чаще всего подобные задачи решаются для случая, когда объект управления описывается дифференциальными уравнениями. Однако этим не ограничивается все многообразие объектов управления, и, в частности, последний может быть описан интегралом с переменными пределами.

Например, с такой задачей приходится сталкиваться при рассмотрении ускорителя заряженных частиц — синхротрона как объекта управления. Выходной параметр синхротрона — число ускоренных частиц — является функцией таких параметров, как момент инжекции частиц, момент включения высокочастотного ускоряющего поля и т. д., и пропорционален произведению интегралов, пределы которых зависят от вышеуказанных параметров [1].

Пусть требуется реализовать на АВМ интеграл:

$$I(t) = \int_{x_1(t)}^{x_2(t)} f(x) \, dx,$$
(1)

где

f(x) — функция, заданная в виде графика, интеграл от которой не может быть вычислен аналитически;

 $x_1(t), x_2(t)$  — переменные пределы, имеющие конечную производную по параметру t.

Воспользуемся выражением для производной от интеграла [2]:

$$\frac{d}{dt} \int_{x_1(t)}^{t} f(x, t) \, dx = \int_{x_1(t)}^{t} \frac{\partial f(x_1, t)}{\partial t} \, dx + f(x_2, t) \, \frac{dx_2}{dt} - f(x_1, t) \, \frac{dx_1}{dt} \,. \tag{2}$$

Для случая (1) формула (2) имеет вид

$$\frac{d}{dt} \int_{x_1(t)}^{x_2(t)} f(x) \, dx = f(x_2) \cdot \frac{dx_2}{dt} - f(x_1) \, \frac{dx_1}{dt} \,. \tag{3}$$

Из выражения (3) следует схема моделирования интеграла (1) рис. 1. Значение I(0) задается начальными условиями интегратора, если I(0) известно. Если I(0) неизвестно, то его легко получить на вы-

ходе интегратора, в силу свойств последнего запомнить напряжение на выходе. Для этого достаточно изменить  $x_1$  и  $x_2$  от нуля до  $x_1(0)$  и  $x_2(0)$ соответственно. Причем порядок и закон изменения x1 и x2 не имеет существенного значения. Важно, чтобы операция дифференцирования x<sub>1</sub> и x<sub>2</sub> выполнялась без большой погрешности.



Рис. 1. Блок-схема непрерывного моделирования интеграла с переменными пределами

Верхняя область частоты изменения пределов ωx, и ωx, при моделировании (1) по схеме рис. 1 ограничена динамической погрешностью блока перемножения, которая составляет 1% в области до 100 ец. Нижняя область частот изменения  $\omega_{x_1}$  и  $\omega_{x_2}$  ограничена погрешностью операции дифференцирования. Схема рис. 1 соответствует непрерывной модели интеграла (1) в отличие от импульсной, предлагаемой ниже.

Действительно, интегрируя выражение (3) при  $x_1 = 0$ , получим широко известную схему интегрирования на АВМ по переменной, не являющейся временем:

$$\int f(x) \, dx = \int \left[ f(x) \, \frac{dx}{dt} \right] dt. \tag{4}$$

Если согласно (4) изменять х от x1 до x2, то получим схему импульсного моделирования интеграла (1) рис. 2, так как напряжение на выходе интегратора равно интегралу (1) в моменты времени  $t_1, t_2,...$ Соотношения между частотами  $\omega_{x_1}, \omega_{x_2}$  и частотой осциллирующей функции ω, должны удовлетворять теореме Котельникова, поэтому схему рис. 2 можно рекомендовать для моделирования интеграла (1) с низкочастотными пределами. Обе схемы рис. 1 и 2 охватывает весь частотный диапазон АВМ.

Если в (2)  $\omega_f \ll \omega_{x_1}, \omega_{x_2},$  где  $\omega_f$  — частота изменения подынтегральной функции, то возможно вычисление и интеграла

$$\int_{t_1(t)}^{t_2(t)} f(x, t) dt.$$

(5)

Если модули производных

$$\left|\frac{\partial f}{\partial x}\right|, \quad \left|\frac{\partial x_1}{\partial t}\right|, \quad \left|\frac{\partial x_2}{\partial t}\right|$$

одного порядка, а  $\omega_f \ll \omega_{x_1}, \omega_{x_2},$  то погрешность моделирования выражения (5) по схеме рис. 1 существует в первый момент времени пос-65

5. Заказ 2258.

ле изменения f(x, t), т. е. осуществляется моделирование интеграла (5) с некоторым запаздыванием. При моделировании же интеграла (5) по схеме рис. 2 погрешность вообще отсутствует, если изменение подынтегральной функции от аргумента t аппроксимировать ступенчатой линией, т. е.  $f(x, t_i) = \text{const } B$  момент интегрирования по х. При этом частоты w<sub>f</sub>, w<sub>x</sub>, и w<sub>x</sub> могут быть одного порядка.





Рис. 2. Блок-схема и временная диаграмма импульсного моделирования интеграла с переменными пределами

Вопрос о применимости схемы рис. 1 или схемы рис. 2 должен решаться конкретных условиях, B когда заданы  $\omega_f$ ,  $\omega_{x_1}$ ,  $\omega_{x_2}$ , контур управления и т. д. При несколько ином подходе к выводу соотношений захвата частиц в ускорение, нежели в [1], число частиц, ускоренных до конечной энергии, пропор-

$$\int_{a}^{b} \int_{c}^{d-y} f(x) \, dx \, dy, \qquad (6)$$

где a, b, c, d - функциивремени.

ционально интегралу

Рассмотрим внутренний интеграл

$$I(y, t) = \int_{c}^{a-y} f(x) dx.$$

Записывая для него

выражение (3), получим схему, аналогичную рис. 1, которую можно рассматривать как функциональный блок. Интеграл (6) будет равен

$$\int_{a}^{b} (t) I(y, t) \, dy.$$
(7)

Последнее выражение аналогично (5), и, учитывая ограничения, относящиеся к моделированию (5) по схеме рис. 1, получим схему моделирования интеграла (6).

### Заключение

В статье даются методы и схемы моделирования интегралов с переменными пределами, для случая, когда подынтегральная функция не зависит от времени, а также при наличии этой зависимости. В частности, данные методы могут быть применены при моделировании синхротрона как объекта управения, если пучок инжектируемых частиц не имеет углового разброса и распределение частиц по амплитудам бетатронных колебаний неравномерно.

#### ЛИТЕРАТУРА

1. И. С. Данилкин, М. С. Рабинович. ЖТФ, т. 28, в. 2, 1958. 2. В. И. Смирнов. Курс высшей математики, т. 2, ГИТТЛ, М., 1957.