ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 169

1968

СПЕКТРЫ ПОГЛОЩЕНИЯ ФТОРИДОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

л. А. ЛИСИЦЫНА

(Представлена научным симинаром физико-технического факультета)

Фториды щелочноземельных металлов имеют решетки типа флюорит. Эта решетка представляет собой вставленную одна в другую кубическую решетку, состоящую из ионов F, – и гранецентрированную решетку из ионов Ca²⁺ (рис. 1). Параметр решетки для CaF₂ равен 5,45Å, для SrF₂ — 5,78Å, для BaF₂ — 6,19Å.

При комнатной температуре в этих кристаллах основным типом дефектов являются антифренкелевские дефекты [1, 2, 3], представляющие собой вакансии галоида и ион галоида в межузлии. Число анионных вакансий и ионов в межузлии можно изменять путем введения в кристалл примеси. При введении в решетку кристалла одновалентных ионов примеси Me⁺ наблюдается замещение ионов Me²⁺ ионами Me⁺, при

этом компенсация заряда происходит путем образования дополнительного числа анионных вакансий [3, 2]. При введении в кристалл трехвалентных ионов примеси Me^3 +, благодаря близости ионных радиусов Me^2 + и Me^3 +, образование смешанных кристаллов Me^2 + — Me^3 + происходит по типу изоморфного замещения ионов Me^2 + ионами Me^3 + с образованием ионов F - в межузлии. Последнее было доказано опытами по измерению постоянной решетки и плотности кристалла [4, 5], а также измерением электропроводности примесных кристаллов [2]. Видимо, близостью ионных радиусов кислорода и

фтора (1,36 A и 1,33 A соответственно) можно объяснить высокую химическую активность фторидов щелочноземельных

Рис. 1. Кристаллическая решетка типа флюорит

металлов при взаимодействии с кислородом и водяными парами при нагревании кристаллов на воздухе. Кислород, замещая ионы фтора, может войти в виде гидроксильной группы ОН⁻, тибо в виде ионов О²⁻, образуя при этом в кристалле дополнительное число анионных вакансий. Присутствие кислорода является причиной появления красной флюоресценции кристалла [6], нескольких дополнительных полос в инфракрасной области спектра [7] и дополнительной полосы в ультрафиолете в интервале длин волн 205 ÷ 220 ммк по данным различных авторов. Взаимодействие с кислородом наблюдается и в кристаллах SrF₂, и BaF₂. Так, Kapac [8] отмечает, что при нагревании на воздухе (1000°С, 8 *мин.*) наблюдается помутнение поверхности кристалла SrF₂ и появление в спектре необлученного кристалла полосы поглощения с максимумом на 205 *ммк.* Незначительное загрязнение кислородом происходит и при аддитивном окрашивании этих кристаллов [9].

В более поздних работах по изучению оптических свойств щелочноземельных фторидов большое внимание стали обращать на предысторию кристаллов с учетом их взаимодействия с кислородом, поскольку было обнаружено, что различие в окрашивании (как аддитивном, так и субтрактивном) от кристалла к кристаллу вызывается наличием кислорода, который может входить в кристалл во время выращивания, в процессе окрашивания [7, 10], при нагревании кристалла не только на воздухе, но и в инертной атмосфере [1, 2, 6, 11], при длительном хранении кристаллов на воздухе [1].

Аддитивное окрашивание кристаллов CaF₂

• Аддитивное окрашивание кристаллов CaF₂ в парах металла имеет ряд особенностей.

По данным Смакулы [12], спектр аддитивного окрашенного кристалла не зависит от условий опыта и состоит (рис. 2) из четырех полос с максимумами на 225, 335, 400

и 580 *ммк.* По данным Люти [13], спектр

из четырех полос можно получить только при невысокой температуре окрашивания $(500 \div 600^{\circ}C)$. При окрашивании при более высокой температуре с последующим охлаждением, спектр быстрым кристалла состоит из так называемых а и в-полос (рис. 3), лежащих на 370 и 520 ммк соответственно [14]. Ряд авторов, не указывая условия эксперимента, отмечает, что спектр кристалла СаF₂, окрашенного в парах металла, имеет полосы на 320, 370 и 570 ммк [15], на 380 и 550 ммк и сильное поглощение около 200 ммк [16].

Фонг и Джаком [10] обнаружили, что окрашивание при высокой температуре (850°С) с последующим медленным охлаждением вызывает появление спектра, состоящего из четырех полос с максимумами на 225, 335, 400 и 580 ммк, а окрашивание при этой температуре с последующим быс-

Рис. 3. Спектр поглощения кристаллов СаF₂ при сильном аддитивном окрашивании

трым охлаждением сопровождается появлением полос с максимумами на 380 и 555 ммк. Измерение этого спектра при 77°К позволило выявить дополнительные полосы с максимумами на 733, 670 и 520 ммк.

Люти предлагает следующее объяснение полученным результатам: спектр, состоящий из четырех полос, появляющийся при слабом аддитивном окрашивании, обусловлен присутствием в кристалле какой-то приме-16 Cuo anoreza TRM

си. При окрашивании кристаллов при высокой температуре с последующим медленным охлаждением спектр также состоит из четырех полос, однако в этом случае сильно повышается фон, обусловленный появлением в кристалле каллоида. Спектр из α - и β -полос приписывается атомарно распределенному в кристалле кальцию. Люти предполагает, что этот спектр перекрывает спектр, состоящий из четырех полос. Однако измерения при — 130°С не дали возможность разрешить оба типа спектра, обнаружено только смещение α и β -полос в сторону коротких длин волн и уменьшении их ширины. В работе [17] при окрашивании в парах металла особо чистых кристаллов авторы не наблюдали спектра из четырех полос, что является хорошим подтверждением предположения Люти.

Фонг и Джаком [10] считают, что быстрое охлаждение аддитивно окрашенных кристаллов CaF₂ замораживает захваченные в процессе окрашивания электроны в некотором равновесном состоянии для данной температуры окрашивания (850°C). Появление четырех полос в спектре при окрашивании кристаллов с последующим медленным охлаждением объясняется установлением нового стабильного состояния для более низкой температуры. Таким образом, оба типа спектра авторы [10] в противоположность мнению Люти считают обусловленными не примесью, а локализацией электронов на собственных дефектах кристаллической решетки.

Бонтинк [14] для выяснения природы α- и β-полос высвечивал аддитивно окрашенные кристаллы поляризованным и неполяризованным светом β-полосы. Обнаружено сильное высвечивание β-полосы, незначительное уменьшение α-полосы, появление дополнительных полос на 675, 750 и 825 ммк. Высвечивание светом α-полосы вызывает незначительное уменьшение α- и β-полос и появление тех же самых дополнительных полос. На основе этих опытов делается вывод о взаимосвязи α- и β-центров, о изотропности свойств центров, ответственных за β-полосу. Предлагаются модели центров:

α-центр — пара антифренкелевских дефектов, захватившая электрон;

β-центр — электрон, локализованный на анионной вакансии.

Однако такая интерпрогация α-полосы опровергается работами Арендса и Карраса [9, 18], в которых предлагается модель α-центра, как электрона, захваченного на анионной вакансии. В работе [18] приведен спектр ЭПРа аддитивно окрашенного кристалла CaF₂, показано, чго относительное изменение интенсивности линий сверхтонкого взаимодействия в спектре ЭПРа хорошо согласуется с теоретическим расчетом по взаимодействию электрона в анионной вакансии с ионами близлежащего окружения в структуре CaF₂. Из опытов по влиянию высвечивания в с- и в-полосах на спектр оптического поглощения и сигнал ЭПРа кристалла получено, что высвечивание в а-полосе вызывает уменьшение аполосы через 1,5 часа, полное исчезновение сигнала ЭПРа через 4,5 часа, незначительное уменьшение в-полосы и рост полос на 670 и 600 ммк. Высвечивание в β-полосе не влияет на сигнал ЭПРа, изменение спектра поглощения в этом случае в работе не приведено. Однако неполная корреляция кривых разрушения α-полосы и сигнала ЭПРа, видимо, ставит под сомнение вывод автора о том, что сигнал ЭПРа обусловлен α-центрами.

Гессик [19] на основе расчета предлагает модель α-центра как центра, состоящего из анионной вакансии, захватившей два электрона (F'-центр).

Другой способ наведения центров окраски в кристаллах CaF₂ электролитическое окрашивание с острия катода. По данным Смакулы [12], Берили [20], в этом случае появляется спектр, состоящий из четырех

2. Заказ 4888

полос поглощения с максимумами на 225, 335, 400 и 580 ммк, а по данным Мольво [1], спектр состоит из а- и β-полос. В опытах Арендса [18] при окрашивании на воздухе при 750°С спектр кристалла состоял из а- и β-полос и дополнительных полос на 750, 670 и 600 ммк, значительные величины которых обусловлены, по мнению автора, вхождением в кристалл в процессе окрашивания на воздухе кислорода.

Причина появления двух типов спектров не изучена.

Фотохимическое окрашивание кристаллов CaF₂

Облучение кристаллов CaF_2 рентгеновскими лучами, электронами, γ -лучами, протонами вызывает появление в спектре поглощения добавочных полос (рис. 2) с максимумами на 225, 335, 400 и 580 ммк [1, 17, 20—23].

С увеличением дозы облучения в рентгенизированных кристаллах наблюдается насыщение всех полос [14, 20, 22, 24], причем отмечается, что соотношение между всеми полосами с дозой облучения остается постоянным [20]. Одинаковое поведение всех полос при облучении, одинаковая скорость разрушения всех полос при термическом отжите [20] позволили Берили предположить, что либо все четыре полосы обусловлены одним типом центров, имеющим различные энергетические уровни, либо существует несколько типов взаимосвязанных центров.

Автор настоящей статьи при изучении кривых роста полос поглощения с дозой протонного облучения обнаружила, что при дозах, значительно превышающих применявшиеся в работах [14, 20], наблюдается аномальное поведение полосы с максимумом на 580 ммк [25]. Тогда как все остальные полосы насыщаются, кривая роста полосы на 580 ммк имеет три стадии: первоначальный быстрый рост, затем насыщение и затем дальнейший рост полосы с дозой облучения. Делается вывод о различной природе дефектов, ответственных за полосу с максимумом на 580 ммк и тремя остальными полосами.

Большую информацию о природе полос можно получить при изучении при низкой температуре спектров кристаллов, окрашенных при разных температурах. Однако работ в этом направлении пока еще очень мало. Измерение спектра поглощения при 77°К кристаллов, окрашенных электронами при комнатной температуре, дало своим результатом смешение в сторону коротких длин волн полос с максимумами на 225, 335 и 400 ммк и в сторону длинных волн полосы с максимумом на 573 ммк [3, 18]. Измерением спектра при 4°К [1] удалось добиться большего разрешения полос. Обнаружены две новые полосы в глубоком ультрафиолете на 186 и 194 ммк и две очень слабых полосы на 265 и 285 ммк, не замечено смещение полосы с максимумом на 400 ммк; во всем остальном спектр при 4°К такой же, как и в работах [3, 12].

Окрашивание при 77°К вызывает появление спектра, состоящего из полос с максимумами на 270, 320 и 550 *ммк*. Предполагается, что две последние полосы соответствуют полосам на 335 и 580 *ммк* в спектрах кристаллов, окрашенных при комнатной температуре.

Отсутствие в спектре кристаллов, облученных электронами при 77°К полосы, соответствующих полосам на 400 и 225 *ммк*, видимо, свидетельствует об иной структуре дефектов, ответственных за эти полосы по сравнению с полосами на 335 и 580 *ммк*.

Идентичность спектров' фотохимически и аддитивно окрашенных кристаллов однозначно определяет электронную природу всех четырех полос поглощения с максимумами на 225, 335, 400 и 580 ммк.

Несомненно, что в процессе фотохимического окрашивания одновременно с электронными центрами окраски образуются и дырочные. Полосы дырочной природы, видимо, лежат в далекой ультрафиолетовой области спектра, не доступной для измерения обычными кварцевыми приборами. Некоторые дырочные полосы, лежащие в близкой ультрафиолетовой области спектра, как обнаружено, не стабильны при комнатной температуре. Хейс и Твидел [26] в рентгенизованных при 77°К кристалах CaF₂ обнаружили полосу на 350 ммк. При нагревании кристалла полоса разрушается при 138°К.

Авторы приписывают этой полосе центр типа F₂, ориентированный по направлению [001], так называемые V -центры.

В. А. Архангельская и Л. А. Алексеева [27] при облучении у -лучами при 77°К кристаллов CaF2, активированных редкоземельными ионами Nd, Du, Ho, Er, Tu, обнаружили поглощения на 315 ммк, которые разрушаются при 300°К. Авторы предполагают, что эта полоса обусловлена собственными дефектами структуры CaF₂, так как положение полосы не зависит ни от вида активатора, ни от его концентрации. К сожалению, авторами не были проделаны опыты на чистых кристаллах CaF₂, однако не исключается возможность интерпретации этой полосы, как принадлежащей автолокализованным дыркам F₂. Сьерро [28] при изучении спектра ЭПРа естественных кристаллов CaF2, рентгенизованных при 77°К, обнаружил сигнал от Vк-центра Хейса и Твидела. При 138°К одновременно с разрушением Ик-центров появлялась новая полоса, которая автором была приписана V - центрам-комплексам, состоящим из дырки F - и катионной вакансии, лежащей в плоскости [110]. Отсутствие V^F-центров в синтетических кристаллах CaF₂ объясняется автором следующим образом. В любом кристалле CaF₂ всегда присутствует в силу близости радиусов примеси редкоземельных ионов. Однако компенсация заряда трехвалентного иона зависит от условий выращивания кристалла. При выращивании из расплава компенсация избыточного заряда трехвалентного иона осуществляется межузельными иснами F-, при выращивании кристаллов из раствора (естественные кристаллы) компенсация осуществляется катионными вакансиями, которые и участвуют в образовании V _г-центров. Однако предположение автора о различных типах дефектов в естественных и синтетических кристаллах CaF_{2*} видимо, не найдут подтверждения, поскольку одинаковое поведение этих кристаллов в процессе фотохимического и аддитивного окрашивания, в процессе термического отжига говорит не в пользу выдвинутого предположения.

Таким образом, обнаружить дырочные полосы при комнатной температуре пока не удается. Как указывалось выше, все четыре полосы в спектре окрашенных кристаллов CaF₂ имеют электронную природу. С целью выяснения моделей центров, ответственных за эти полосы, рядом авторов [3, 11, 24, 29, 30] применяется следующий метод: в кристалл вводится заведомо известный тип дефектов и выясняется его влияние на характер спектра поглощения. Известно, что при введении CaF₂ ионов редких-земель компенсация избыточного положительного заряда осуществляется ионами F - в межузлии, концентрация которых возрастает по сравнению с равновесной. По данным Смакулы [30] при введении примеси иттрия в спектре облученного кристала дополнительных полос не возникает, наблюдается только увеличение всех четырех полос спектра, при больших концентрациях активатора по сравнению со всеми остальными сильно увеличивается полоса с максимумом на 400 ммк. Делается предположение, что за эту полосу ответственны атомы фтора в межузлии.

При введении примеси Na в кристаллах вводится дополнительное число анионных вакансий. Спектр поглощения кристаллов CaF₂—Na, облученных электронами, состоит из полос на 330 ммк, 385 ммк и 605 ммк. Предполагается [11, 30], что эти полосы соответствуют полосам с максимумами на 335, 400 и 580 ммк в чистых кристаллах CaF₂. Сильное увеличение с введением Na-полосы на 605 ммк послужило аврам [30] основанием приписать этой полосе и полосе на 580 ммк в чистом кристалле центр типа: электрон, локализованный на анионной вакансии.

Однако относительно природы полос мнения исследователей расходятся. Ряд авторов [24, 29, 31] на основании нижеприведенных фактов делает вывод о том, что все четыре полосы в спектре окрашенных кристаллов CaF₂ обусловлены примесью иттрия: 1) чистые кристаллы CaF₂, синтезированные из особо чистых солей, не окрашиваются под действием ионизирующего излучения; 2) введение в особо чистый кристалл примеси иттрия вызывает появление спектра облученного кристалла из четырех полос с максимумами на 225, 335, 400 и 580 ммк; 3) в естественных и синтезированных кристаллах CaF₂, как показал спектральный анализ, всегда присутствует примесь иттрия; 4) насыщение всех четырех полос поглощения с дозой облучения в рентгенизованных кристаллах CaF₂ говорит о конечной концентрации в кристалле дефектов, ответственных за эти полосы. Предлагается [29] следующий механизм окрашивания кристаллов CaF₂. В процессе облучения образуются электроны и дырки. Центрами локализации электронов служат трехвалентные ионы иттрия. Четыре полосы поглощенных обусловлены, как показано с помощью ЭПРа, четырьмя переходами электрона на двухвалентном ионе иттрия. Центры локализации дырок в работе [29] не обсуждаются.

Приписывание всем четырем полосам центра одной природы согласуется с данными Берили об одинаковой скорости разрушения всех полос в процессе термического разрушения, но противоречит следующим результатам: 1) сильное увеличение с введением иттрия только одной полосы с максимумом на 400 ммк в работе [30], 2) отсутствие полос на 400 и 225 ммк в кристаллах CaF₂, облученных при 77°К в работе -[1], 3) аномальное поведение полосы на 580 ммк с дозой протонного облучения по сравнению с остальными тремя полосами в работе [25].

Фотохимическое окрашивание кристаллов CaF₂ до облучения, содержащих полосу в ультрафиолетовой области спектра

В предыдущем параграфе речь шла о спектрах поглощения, возникающих в процессе фотохимического окрашивания в естественных и синтетических кристаллах CaF₂, до облучения прозрачных в ультрафиолетовой области спектра. Приведена предлагаемая различными авторами интерпретация центров, ответственных за эти полосы.

Совершенно иную картину представляет собой спектр кристалла, до облучения имеющего полосу в ультрафиолетовой области спектра, максимум которой, по данным различных авторов, колеблется в интервале 205÷220 ммк. Один из предполагаемых центров, ответственных за эту полосу — ион 0⁻⁻, связанный с анионной вакансией.

Спектр фотохимически окрашенного кристалла, содержащего кислород, имеет вид, изображенный на рис. 4, и состоит из полос с максимумами на 320, 370 и 570 ммк [15], причем положение длинноволновой полосы в работе [11] найдено на 540 ммк, в работе [32] на 550 ммк. В ряе-де работ слабая полоса на 320 ммк не наблюдалась. Как видно из сравнения рис. 3 и 4. спектры аддитивно окрашенных кристаллов с после-

нения рис. 3 и 4, спектры аддитивно окрашенных кристаллов с последующим быстрым охлаждением и спектр фотохимически окрашенного кристалла, до облучения не прозрачного в ультрафиолете, подобны. Из этого подобия вытекает электронная природа по крайней мере полос на 370 и 540 ммк.

1

Представляет немаловажный интерес выяснить причину появления двух типов спектров при фотохимическом окрашивании кристаллов CaF₂. Как уже упоминалось выше, причину появления спектра, состоя-

щего из полос на 320, 370 и 540 *ммк*, многие авторы [1, 11, 16] видят в присутствии в кристалле ионов кислорода и сопутствующих им дефектов.

Появление подобного спектра при аддитивном окрашивании также наблюдалось в кристаллах, до окрашивания содержащих кислород [16]. Полосы с максимумами на 225, 335, 400 и 580 ммк появляются только при окрашивании (фотохимическом и аддитивном) особо чистых кристаллов [12], до окрашивания не содержащих кислород [1, 11, 32]. Однако существует и совершенно противоположная точка зрения.

Рис. 4. Спектр поглощения при облучении кристаллов СаF₂, до окрашивания содержащих полосу в ультрафиолетовой области спектра [15]

Ряд авторов [13, 29, 24] четыре полосы в спектрах фотохимически и аддитивно окрашенных кристаллов приписывали присутствию в кристаллах примеси, тогда как спектр, состоящий из α- и β-полос, обусловлен собственными дефектами кристаллической решетки.

Существует и третья группа исследователей [6, 19, 32], которые считают, что появление как спектра, состоящего из четырех полос, так и спектра из α- и β-полос, обусловлено не примесями, а дефектами, наводимыми в решетке в процессе окрашивания. Причем смещение полос объясняется разными авторами по-разному. Например, Гессик [19] предлагает объяснить смещение α-полосы на 400 ммк в фотохимически окрашенных кристаллах влиянием атомарного кальция, образующегося в процессе облучения [33].

Прижбрам в своем обзоре [6] отмечает, что при очень длительном рентгеновском и радиевом облучении естественных кристаллов CaF₂ наблюдается смещение полос с максимумами на 400 и 580 ммк на 380 и 540 ммк. В прессованных таблетках CaF₂ длинноволновой максимум также лежит на 540 ммк. Прижбрам видит причину такого смещения в большом нарушении кристаллической решетки.

Таким образом, вопрос о причинах появления двух типов спектров при окрашивании кристаллов CaF_2 и о моделях центров, ответственных за полосы в спектрах обоих типов, до сих пор остается открытым.

Спектры поглощения синтезированных кристаллов CaF₂, SrF₂, BaF₂

Изучение особо чистых кристаллов CaF_2 , SrF_2 , BaF_2 представляет собой значительный интерес, поскольку появляется возможность ответить на вопрос: примесь или собственные дефекты кристаллической решетки отвегственны за полосы поглощения в спектрах этих кристаллов. Что же касается кристаллов SrF_2 и BaF_2 , то они в природе не встречаются в виде естественных минералов и единственный метод их получения — синтез из соответствующих солей. Однако к настоящему времени имеющееся в литературе большое количество противоречивого экспериментального материала не позволяет сделать определенных выводов ни об изменении спектров в зависимости от способа и условий окрашивания, ни, тем более, о природе дефектов, наводимых в кристаллах

Таблица 1

Положение	полос	поглощения	в спектрах	синтезирова	анных кристаллов	
CaF2, SrF2 и	BaF ₂ ,	окрашенных	различным	и способами	(спектры измерены	
при комнатной температуре)						

	Особенности кристалла до облучения	Способ окрашивания	Положение максиму- мов полос поглощения (в ммк)	Литер а - тура
CaF2	Кристалл до облучения прозрачен в ультра- фиолетовой области спектра	Рентгеновские лучи ү-лучи (Со ⁶⁰) Дейтроны В парах Са Электролитический	730, 380, 259 605, 385, 260 7 34, 551, 433, 350 610, 550, 501, 478, 383, 283, 269, 252, 214 610, 558, 386 и подъем ниже 250 525, 383, подъем ниже 250 552, 504, 487, 384 602, 554, 517, 385, 286, 273, 254, 214	[34] [35] [17] [17] [17] [17] [14] [17] [34]
	Кристалл непрозрачен в ультрафиолетовой области спектра	γ-лучи (Со ⁶⁰)	520, 375, 330	[85]
SrF2	Кристалл прозрачен в ультрафиолетовой об- ласти спектра	Рентгеновские лучи Электроны*	800, 499, 414 602, 505, 419, 290, 198	[8], [3 4] [1]
	Кристалл имеет полосу поглощения на 203 ммк	Рентгеновские лучи В парах металла	570, 440, 206 572, 439, 420, 206 564, 206 631, 5, 499, 443, 4, 343	[8] [34] [34] [9]
	После выращивания кри- сталл окрашен в зеле- ный цвет	в парах металла́ ү-лучи (СО ^{в.)})	980, 631, 443, 361, 307, 294, 281, 234 630, 580, 450, 390, 295	[34] [3 5]
	После выращивания окрашен в желтый цвет	ү-лучи (Co ⁶⁰)	590, 475, 340	[35]
4.	После вырашивания окрашен в желтый цвет	ү-лучи (Со ⁶⁰)	250, 290, 300, 565	[35]
	После вырашивания окрашен в бледно-го- лубой цвет	ү-лучи (Co ⁶⁰)	475, 662	[35]
BaF2		Электроны Рентгеновские лучи	670, 550, 460, 270 670, 480, 380 671, 549, 482, 401,	[2 9] [22]
		В парах металла Ва	303, 293, 259, 239, 229646, 443, 288, 250, 222	[34] [34]
	Кристалл прозрачен в ультрафиолетовой об- ласти спектра	Электроны*	735, 662, 618, 565, 490, 411, 255, 220, 198	[1]

Примечание: *-облучение производилось при комнатной температуре, измерения при — 225°С

6

.

.

в процессе окрашивания. В табл. 1 представлено положение полос в спектрах окрашенных синтезированных кристаллов CaF₂, SrF₂, BaF₂ по данным некоторых авторов.

1. СаF₂. Из результатов, приведенных в табл. 1, следует, что кристаллы CaF₂ имеют различные спектры поглощения в зависимости от вида облучения и способа окрашивания по данным различных авторов. Общим в этих спектрах является присутствие полосы с максимумом на 380 ммк (за исключением спектра кристалла, облученного дейтронами). Появление этой полосы в фотохимически и аддитивно окрашенных кристаллах однозначно определяет электронную природу центров, ответственных за эту полосу. Причины появления разных типов спектров и модели центров, ответственных за другие полосы спектров, не выяснены.

2. SrF₂. После выращивания кристаллы SrF₂ в некоторых случаях получаются прозрачными, имеющими полосу на 206 ммк, что говорит о присутствии кислорода в кристалле [8, 36], могут быть зеленого или желтого цвета. Причина появления окраски не выяснена. В зависимости от исходного образца спектры окрашенных кристаллов различны. В аддитивно окрашенных кристаллах самыми сильными полосами в спектре являются полосы на 631 ммк и 446,4 ммк. Как отмечает Каррас [9], эти полосы имеют сходство с F-полосой щелочногалоидных кристаллов с уменьшением температуры полосы смещаются в коротковолновую область спектра, облучение кристаллов светом этих полос ведет к их уменьшению.

3. ВаF₂. Во многих работах отмечается чрезвычайно слабая чувствительность к фотохимическому окрашиванию кристаллов BaF₂.

Аддитивное окрашивание вызывает значительные изменения в спектре. Изучение спектра ЭПРа аддитивно окрашенных кристаллов позволило Арендсу [18] предположить, что сигнал ЭПРа обусловлен электронами, локализованными в анионных вакансиях. Этим центрам приписывается полоса на 660 ммк, однако сопоставление спектров ЭПРа и оптических спектров произведено не было.

ЛИТЕРАТУРА

 D. Messner, A. Smakula. Phys. Rev., 120, 1162 (1960).
 R. W. Ure. J. Chem. Phys., 26, 1363 (1957).
 A. D. Franklin. J. Phys. Chem. Sol., 26, 933 (1965).
 E. Zintle, A. Udgard. Z. anord u allgem. Chem., 240, 150 (1939).
 I. Short, R. Roy. J. Phys. Chem., 67, 1860 (1963).
 K. Przibram. Z. Physik, 154, 111 (1959).
 W. Bontinck. Physica, 24, 650 (1958).
 H. Karras. Phys. Stat. Sol., E. 1. H. 1 (1961).
 H. Karras. Phys. Stat. Sol., 1, 160 (1961).
 F. K. Fong, R. N. Yocom. J. Chem. Phys., 41, 1383 (1964).
 I. H. Schulman, R. J. Ginther, R. D. Kirk. J. Chem. Phys., 20, 1966 52). (1952).

12. A. Smakula. Z. Physik, 138, 276 (1954).

13. F. Liity. Z. Physik, 134, 596 (1953). 14. W. Bontinck. Physica, 24, 639 (1958).

П. П. Феофилов. ДАН СССР ХСП, № 3 (1963).
 Л. В. Кротова, В. В. Осико, В. Т. Удовенчик. ФТТ, 7, 238 (1965).
 R. Görlich, H. Karras, K. Lehmann. Phys. Stat. Sol., 3, 98 (1963).
 I. Arends. Phys. Stat. Sol., 7, 805 (1964).
 B. R. Görlick. Physica, 26, 378 (1956).
 S. Barile, I. Chem. Phys. 20, 207 (1052).

19. В. К. GOTTICK. Physica, 20, 378 (1956).
20. S. Barile. J. Chem. Phys., 20, 297 (1952).
21. A. Smakula. Phys. Rev., 91, 1970 (1953).
22. A. Smakula. Phys. Rev., 77, 408 (1950).
23. Е. К. Завадовская, Н. М. Тимошенко, В. А. Чернышев, Л. А. Лисицына. Известия ТПИ, 19, 225 (1965).
24. Р. Görlich, H. Karras, W. Lüdke, H. Mothes, R. Reimann. Phys.

Stat. Sol., 3, 478 (1963).

25. Л. А. Лисицына. Оптика и спектроскопия, 19, 295 (1965). 26. W. Hayes, I. W. Twidell. Proc. Phys. Soc., 19, 1295 (1962). 27. В. А. Архангельская, А. А. Алексеева. Доклад на XIV совещания по люминесценции.

по люминесценции.
28. I. Sierro. Phys. Rev., 138, № 2А, А648 (1965).
29. I. R. O'connor, I. H. Chen. Phys. Rev., 130. 1790 (1963).
30. W. I. Scouler, A. Smakula. Phys. Rev., 120, 1154 (1960).
31. I. R. O'connor, I. H. Chen. J. Phys. Chem. Soc., 24, 1382 (1963).
32. P. Feltham, J. Andrews. Phys. Stat. Sol., 10, 203 (1965).
33. W. Bontinck, W. D. Dekeyser. Physica, 22, 595 (1956).
34. P. Görlich, H. Karras. Труды международной конференции по полупроводникам. Прага. (1960).
35. Э. Г. Черневская. Оптика и спектроскопия. 11, № 4 (1961).
36. Н. Bruch, P. Görlich, H. Karras, R. Lehmann. Phys. Stat. Sol.,

4, 685 (1964).