исследование торфяной смолы

К. К. СТРАМКОВСКАЯ, А. Т. РУБАНОВ, Ю. ЛИ

(Представлена научным семинаром химико-технологического факультета)

Для разработки рациональной технологии использования смолы химико-металлургического процесса на торфе были проведены поиски характеристик смолы и условий пиролиза, при которых может быть получено наиболее ценное сырье для органического синтеза. А также определялись некоторые параметры, необходимые для технологических расчетов переработки смол.

Смола для исследования получалась на лабораторной установке, состоящей из реактора, представляющего собой трубу из нержавеющей стали диаметром 600 мм и длиной 900 мм, и конденсационной аппаратуры — холодильника и приемника смолы и воды. Реактор нагревался двумя трубчатыми печами, одна из которых располагалась над той частью камеры, куда помещалось топливо, т. е. над камерой коксования, а другая устанавливалась над частью трубы, служащей камерой пиролиза. Регулирование обогрева осуществлялось лабораторными регуляторами напряжения. Смола была получена при температурах коксования и пиролиза парогазовых продуктов, 600, 700 и 800°С, а также при температуре коксования 600°С с пиролизом паров и газов при температуре 400°С.

Термическому разложению подвергался торф Таганского болота и топливо-плавильные материалы (ТПМ), приготовленные на его основе. Характеристика торфа представлена в табл. 1.

Таблица 1

Технический и элементный состав топлива, %

Топ-	Wa	Ac	Vг	C_L	Hr	Sc	Nr	Or
Торф	11,11	8,70	68,42	59,27	6,10	0,10	2,50	32,03

Компонентный состав топливо-плавильных материалов: горючей части торфа — 53,95%, минеральной части (руда + зола торфа) — 46,05%.

Групповой состав образцов смол, определенный по методике: Г. Л. Стадникова [1], приведен в табл. 2. Эти данные показывают, что общее количество фенолов уменьшается от 15 до 9,6% при изменении температуры пиролиза от 600 до 800°С.

Уменьшение содержания фенолов с повышением температуры в 1,5 раза прежде всего, очевидно, объясняется глубоко идущими реакциями распада. По данным В. Е. Раковского [2] фенолы при высоких

Таблица 2 Групповой состав смол термического разложения торфа и топливо-плавильных материалов

		Смола из						
№ п.п.	Vonue usutu p. 0	торфа топливо-плавильных материалов						
	Компоненты в %	при						
		60 0° C	600°C	700°C	800 C			
1	нерастворимые в бен- золе	5,25	6,20	4,82	6,65			
2	основания	4,54	4,68	4,25	3,83			
3	карбоновые кислоты	0,71	0,77	0,80	0,74			
4	парафины и воски	6,80	6,94	5,50	4,33			
5	асфальтены	3,17	3,41	4,74	6,00			
6	фенолы	14,10	15,06	12,15	9,60			
7	н ейтраль ные масла (по разности)	65,43	62,96	67,74	68,85			
	Итого:	100, 10	100,10	100,10	100,00			

температурах (600°С) могут распадаться с образованием окиси углерода, свободного углерода, водорода и водяных паров. Кроме того, при температурах 700—800°С может происходить конденсация многоатомных ароматических соединений, в образовании которых, очевидно, существенное значение принимают фенолы.

При уменьшении суммарного количества фенолов с повышением температуры пиролиза содержание легких фенолов в смолах должно заметно увеличиваться, благодаря восстановлению многоатомных фенолов в присутствии углерода, а также в результате крекинга высокомолекулярных алкилзамещенных фенолов.

Количество высокомолекулярных твердых парафинов в смолах с повышением температуры пиролиза также сильно уменьшается в связи с тем, что с увеличением температуры пиролиза от 600 до 800°С происходит термическая деструкция высокомолекулярных богатых водородом углеводородов с образованием жидких низкомолекулярных углеводородов и газа.

С повышением температуры пиролиза заметно повышается количество асфальтенов, т. е. многоядерных соединений, не растворимых в бензоле.

Процесс пиролиза азотсодержащих веществ основного характера протекает, по-видимому, главным образом в направлении взаимодействия с другими веществами, обладающими высокой реакционной способностью, что приводит к некоторому уменьшению содержания в смоле азотистых оснований с повышением температуры пиролиза.

Термический распад карбоновых кислот почти не имеет место при данных температурах. Очевидно, уже при температуре 600°С получаются низкомолекулярные карбоновые кислоты.

Что касается влияния присутствия руды в топливе на групповой состав, то анализы показали, что содержание отдельных групп соединений в смолах 600-градусного режима, полученных как из чистого торфа, так и из топливо-плавильных материалов, отличается на величины, лежащие в пределах ошибки опыта.

Для дальнейших характеристик все образцы смолы были разогнаны при атмосферном давлении на приборе, предназначенном для перегонок малых количеств [/3]. Основанием пригодности этого прибора для определения фракционного состава смол послужила хорошая сходимость результатов разгонки керосина в указанном приборе и по ГОСТ 2177—59.

Результаты разгонки смолы приведены в табл. 3.

Таблица 3° Фракционный состав смол термического разложения торфа и топливо-плавильных материалов

	Температура кипения фракций, °C	Торфа	при	Смола из топливо-плавильных материалов при						
№ п.п.		600°C		600°C		700°C		800°C		
		1	2	1	2	1	2	1	2	
-1	до 170	8,20	8,65	9,80	8,83	11,60	10,12	3,49	9,70*	
2	170—200	10,13	3,04	3,36	4,84	1,85	6,38	13,94	7,68	
3	200-230	11,16	13,68	18,47	12,68	6,70	12,32	13,94	17,90	
4	230—270	14,18	11,60	15,60	14,15	15,54	13,15	11,62	10,24	
5	270-300	12,22	11,66	- >	14,44	9,12	11,60	10,22	11,31	
6	300—340	18,10	21,78	21,44	17,61	19,50	17,10	17,69	19,65	
7	>340	18,00	24,05	25,77	23,30	31,60	23,90	23,25	21,12	
	- Sa		1						1	
	Итого:	92,61	94,46	94,43	95,85	95,81	95;17	94,15	94,60	
	Потери	7,39	5.54	5,57	4,15	4.09	4,83	5,85	5,40	

Эти данные показывают, что несмотря на большие расхождения в параллельных опытах, можно заметить общее направление влияния температуры пиролиза на выход фракций из смол торфа и топливоплавильных материалов. Все образцы полученных смол обладают большим выходом масляных фракций, составляющих 69—76,5% от смолы, и малым выходом пека — 23—26%.

С увеличением температуры пиролиза от 600 до 800°С изменяется и фракционный состав смол. Так, например, выход легкой фракции, выкипающей до 200°С, увеличивается на 4%, а выход тяжелых фракций несколько уменьшается. Полученные данные показывают также, что присутствие железной руды в топливе не оказывает существенноговлияния на фракционный состав смолы. Однако проведенная нами разгонка смол 600-градусного режима с водяным паром (табл. 4) показала, что фенолов, летучих с водяным паром, содержится на 1,3% больше в смоле из ТПМ, чем в смоле из торфа.

Фракционный состав летучих с водяным паром фенолов такжесильно отличается. Так, содержание фенолов, выкипающих до 210°С, в сырых фенолах из смолы ТПМ 73,5%, а в фенолах из смолы торфаих только 53,2%, что в пересчете на соответствующую смолу составляет 9,5% против 6,7%. Таким образом, в смоле пиролиза ТПМ легких фенолов больше, чем в смоле пиролиза торфа в 1,3 раза. Фракционный состав нейтральных масел, летучих с водяным паром, также несколько отличен. Из смолы пиролиза ТПМ выкипало 93,5% при температуре 290°С, в то время как при разгонке подобных масел торфяной смолы 93,5% отгонялось при температуре 340°С.

Таблица 4 Характеристика продуктов, летучих с водяным паром, полученных из смол термического разложения торфа и Т. П. М. при 600°C

		Выход в %		
№ п.п.	Показатели	смола тор ф а	смол. ТПМ	
1	отгон с водяным паром, в том числе:	28,10	24,42	
	фенолов	11,80	13,09	
	нейтральных масел	16,30	11,33	
-2	фракционный состав фенолов летучих с паром:			
	до 190°	17,86	30,72	
	190—210°	39,20	42,80	
	210—225°	12,64	9,71	
	225—240°	9,08	4,16	
	240—300°	16,80	3,28	
	300—350°	2,66	1,71	
	>350°	6,00	4,00	
-3	фракционный состав нейтральных масел летучих с паром:			
	до 200°	26,82	26,20	
	200—235°	30,12	25,20	
	235—270°	21,78	25,70	
	270—290°	_	16,40	
	270—340°	14,62	_	
	>340°	4,82	5,30	
4	Остаток смолы нелетучей с водяным паром + потери	71,90	75,58	

В связи с тем, что в химико-металлургическом процессе ожидается получение большого количества низкотемпературной смолы, подвергнувшейся в верхних частях домны сильному пиролизу, была получена смола из чистого Таганского торфа при температуре в камере коксования 600°C, а в пиролизной камере 400°C.

Для выявления технологических характеристик смолы с целью определения путей ее рационального использования она была подвергнута дальнейшему исследованию. Для этого смола тщательно обезвоживалась путем многократного нагревания до 60°С на водяной бане и затем последующего охлаждения до такого состояния, при котором смола находилась в твердом состоянии, а вода — в жидком и хорошо отделялась. Некоторые физико-химические характеристики этой смолы приведены ниже:

Содержание воды, %	3,35
Плотность	1,015
Средний молекулярный вес	229
Температура застывания, °С	22

Содержание в % к безводной смоле:

Нерастворимых в бензоле	4,5
Фенолов	15,7
Оснований	4,5
Карбоновых кислот	1,15
Парафинов и восков	6,90
Асфальтенов	4,20
Нейтральных масел (по разности)	62,89

Как видно, плотность этой смолы близка к единице, и потому ее трудно отделить от воды путем простого отстаивания. Кроме того, при комнатной температуре смола находится в неподвижном состоянии и вода, заключенная внутри массы смолы, плохо отделяется.

Обезвоженная смола была разогнана на фракции из медной колбы с одношариковой насадкой. Результаты разгонки смолы и характеристи-

ка фракций приведены в табл. 5.

Эта смола также характеризуется большим выходом масляных

фракций 75-76%.

В дистиллатные фракции переходит 66% фенолов и 55% оснований, что составляет 10,4 и 2,3% от смолы. Максимальное количество фенолов — во фракции, кипящей при температуре 230—270°С. С увеличением температуры кипения фракций уменьшается содержание фенолов в них.

Наибольшее содержание оснований и карбоновых кислот во фракции, кипящей при температуре 200—230°С. При перегонке под атмосферным давлением во фракции переходит только около 50% всех твер-

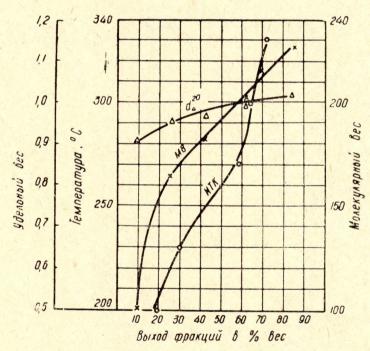


Рис. 1. Кривые разгонок торфяной смолы. ИТК — кривая истинных температур кипения. М. В., $d^{\frac{1}{4}}$ — кривые изменения молекулярных весов и плотности

дых парафинов и восков, находящихся в смоле. Другая их половина остается в пене.

Кривые истинных температур кипения, молекулярных весов и плотности изображены на рисунке, которые могут быть использованы при технологических расчетах дистилляции смолы.

Характеристика дистиллатных фракций

The second secon	Показатели	Пределы кипения фракции, °С							
№ п.п.		до 150	150—200	до 200	200-230	230 - 270	270—300	300—330	330 легк.
1 2 3 4 5 6	Выход фракции % (вес) Удельный вес d 20 Молекулярный вес (средний) Вязкость, ССТ при 20°С Вязкость, ССТ при 50°С Содержание, % фенолов кислот оснований твердого парафина и восков нейтральных масел Элементный состав % С Н N S+O	5,3 0,8557 82	11,2 0,9445 119	16,5 0,9123 101 2,20 — 15,60 3,37 3,54 — 77,45 81,93 9,95 3,12 5,00	12,1 0,9531 164 12,28 — 21,50 3,24 5,70 — 69,82 81,18 9,00 2,70 7,20	26,7 0,9794 183 15,77 — 24,80 1,32 2,93 — 72,28 78,50 9,49 3,88 8,13	8,6 0,9836 202 18,07 — 19,30 1,00 2,50 4,2 72,00 80,32 9,80 3,52 6,36	11,8 0,9872 214 3act. 5,13 5,11 0,60 0,77 24,20 69,39 83,76 11,05 2,88 2,31	24,0 1,158 —
0	Фракционный состав Н.К., °С 10% выкипает до температуры, °С 20 30 40 50 60 70 80 90			82 121 147 157 174 184 193 203 220 240	72 203 207 214 221 230 240 267 267 280	98 229 240 246 262 270 283 302 310 328	241 258 266 286 300 321 336 340 346	194 292 266 296 304 320 344 350 362 360	

Выводы

1. Выяснено, что при повышении температуры термического разложения топливо-плавильных материалов от 600 до 800°С в смоле уменьшается содержание фенолов в 1,5, твердого парафина в 1,6, оснований в 1,2 раза, а количество карбоновых кислот остается почти неизменным.

2. Показано, что при температуре разложения ТПМ как при низких температурах — 600°С, так и при высоких — 800°С, смола получается с большим выходом масляных фракций (до 76%) и малым выходом пе-

ка (21-23%).

3. С повышением температуры пиролиза от 600 до 800°С содержание легких фракций в смоле, кипящих до 200°С, увеличивается на 4%.

4. Наличие большого количества железной руды в топливе при пиролизе существенно влияет на состав фенолов. В смоле, полученной в одинаковых температурных условиях из ТПМ, легких фенолов, выкипающих до 210°С, в 1,3 раза больше, чем в таковой из чистого торфа.

5. Дана детальная характеристика смолы 600-градусного режима

и дистиллатных фракций из нее.

ЛИТЕРАТУРА

1. Г. Л. Стадников. Анализ и исследование углей. Издательство АН СССР, 1936. 2. В. Е. Раковский. Общая химическая технология торфа. Госэнергоиздат, 1949. 3. Г. Либ, В. Шенигер. Синтез органических препаратов из малых количеств. Госхимиздат, 1957.