ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Tom 176

ИЗМЕНЕНИЕ ДОБАВКАМИ РАДИАЦИОННОЙ СТАБИЛЬНОСТИ АЗИДА СВИНЦА

Ю. А. ЗАХАРОВ, С. М. РЯБЫХ

(Представлена научным семинаром кафедры радиационной химии)

В отличие от реакции термического разложения азида свинца, изученной подробно в целом ряде работ [1—3], вопросы радиолиза PbN_6 следует рассматривать как полностью неизученные. В этом направлении имеется лишь несколько сообщений, носящих в основном характер качественных наблюдений процесса радиационного распада PbN_6 [4—5]. В связи с изложенным мы предприняли изучение радиолиза PbN_6 под действием рентгеновского излучения, а также влияния как гетерофазных полупроводниковых добавок, так и гомофазных примесей, образующих твердые растворы с PbN_6 , на радиационную стабильность PbN_6 . Первые полученные нами в этом плане результаты сообщаются в настоящей работе.

Материалы и условия эксперимента

Использованный в работе азид свинца был приготовлен осаждением при сливании 0.2~N растворов $Pb\,(NO_3)_2$ квалификации х. ч. и перекристаллизованного технического NaN_3 . Гетерофазные полупроводниковые добавки — Ni_2O_3 , CoO, CdO и ZnO — вводили в исходный раствор $Pb\,(NO_3)_2$ во взвешенном состоянии непосредственно перед синтезом. Для введения гомофазных примесей — Ag^+ и Cu^{++} — соответствующие нитраты растворяли вместе с $Pb\,(NO_3)_2$ перед осаждением.

Радиолиз был проведен в термостатируемой ячейке, эвакуированной до давления 10^{-4} мм рт. ст. и затем отсекаемой от вакуумной системы. Вес облучаемой навески 500 мг. О степени разложения судили по возрастанию давления азота в реакционной ячейке. Давление измеряли термопарной лампой ЛТ-2, показания которой записывались потенциометром ЭПП-09. Выбор такой методики обусловлен весьма малой степенью разложения азидов при облучении. Источником излучения служил рентгеновский аппарат РУП-200 — 20—5, мощность дозы составляла $2 \cdot 10^{16}$ эв/г · сек.

Результаты и их обсуждение

Для выяснения влияния гетерофазных примесей на скорость радиолиза PbN_6 была проведена серия экспериментов при 20° С. Кривые разложения чистого PbN_6 и содержащего полупроводниковые добавки приведены на рис. 1.

Для оценки донорно-акцепторных свойств использованных добавок были выполнены измерения работы выхода электрона (ϕ) из PbN₆ и полупроводников, использованных в качестве добавок [6—7]. Резуль-

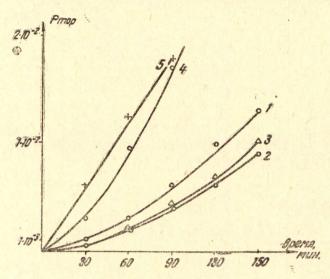


Рис. 1. Радиолиз PbN_6 ($t^\circ = 20^\circ C$). 1— чистый PbN_6 ; 2— $PbN_6 + 10\%$ Ni_2O_3 ; 3— $PbN_6 + 10\%$ CoO: 4— $PbN_6 + 10\%$ ZnO; 5— $PbN_6 + 10\%$ CdO

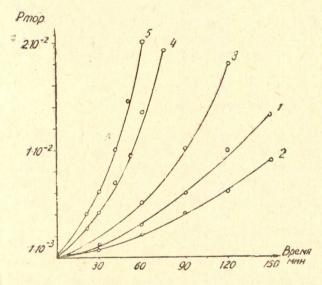


Рис. 2. Радиолиз PbN_6 ($t^\circ = 20^\circ C$). 1 — чистый PbN_6 ; 2 — $PbN_6+1\%$ Cu^{+2} ; 3 — $PbN_6+1\%$ Ag^+ ; 4 — $PbN_6+10\%$ Ag^+ ; 5 — $PbN_6+15\%$ Ag^+

таты измерений ф методом динамического конденсатора приведены в табл. 1.

Специальными опытами было установлено также, что облучение окислов дозами, близкими к использованным в настоящей работе, не приводит, вероятнее всего, к изменениям ф, могущим быть причиной изменений донорно-акцепторных свойств полупроводников.

Из характера расположения кривых на рис. 1 видно, что добавки полупроводников с малой работой выхода электрона — CdO и ZnO — ускоряют радиолиз, тогда как добавки Ni_2O_3 и CoO, имеющие значительную работу выхода электрона, заметно снижают скорость радиолиза PbN_6 .

Ha рис. 2 показано влияние гомофазных примесей — Ад + и Сп ++ — на радиационную стабильность Рь №. Весьма заметно радиационное разложение ускоряет присутствие ионов Ад + в кристаллической решетке PbN₆, причем эффект стремится к насыпри щению содержании примеси около 10 моль %. При введении в решетку PbN6 ионов Си++ наблюдается противоположный эффект — заметное снижескорости радиолиза, пропорциональное содержанию Си ++ в системе.

Таблица 1

Величины К. Р. П. по отношению к золотому электроду сравнения $\varphi^{Au}=4,898$ при 20 С и $\rho=10^{-4}$ мм рт. ст.

Соединение	CdO	ZnO	PbN ₆	N ₆₂ O ₃	CoO
φ 38	4,2	4,2	4,4	5,1	5,2

Измерения темновой и фотопроводимости Pb N_6 с добавками Ag и Cu, выполненные в [8], заставляют склониться к мнению, что эти добавки образуют с PbN_6 твердые растворы внедрения. При этом Ag^+ служит донором, а ион Cu^{++} — из-за небольших размеров и высокого

значения 2-го ионизационного потенциала — акцептором электронов в соответствующих твердых растворах.

Из сопоставления рис. 1 и 2 следует, что зависимость характера влияния примесей на скорость радиолиза PbN₆ от донорно-акцепторных свойств добавок для гетерофазных полупроводниковых и гомофазных примесей качественно подобна.

В обоих случаях радиолиз ускоряют примеси, увеличивающие концентрацию электронов в веществе, а замедляют примеси, уменьшающие число свободных электронов. При этом мы предполагаем, что помещение системы PbN₆—полупроводник в поле радиации не меняет коренным обра-

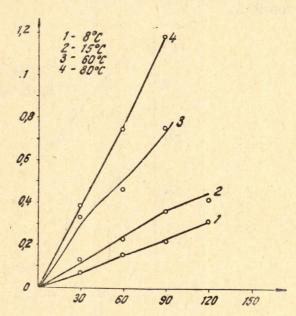


Рис. 3. \P Радиолиз чистого PbN₆. 1 — 8°C; 2 — 15°C; 3 — 60°C; 4 — 80°C

зом донорно-акцепторные свойства примесей и направление передачи свободных зарядов в смеси их с PbN_6 . В выполненных нами ранее экспериментах эта точка зрения подтверждалась закономерным измене-

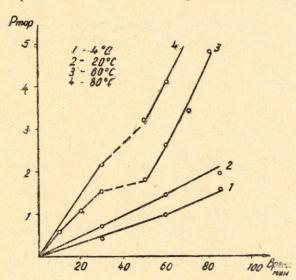


Рис. 4. Радиолиз $PbN_6 + 10\%$ CdO. 1-4°C; 2-20°C; 3-60°C; 4-80°C

нием каталитической активности полупроводников при изменении их ϕ с помощью допирования примесными ионами [10—11].

Кинетические кривые, показывающие увеличение скорости радиолиза с ростом температуры процесса для чистого PbN₆ и с добавкой CdO, приведены на рис. 3 и 4.

В пределах доз, примененных нами, можно считать, что выделение азота линейно увеличивается со временем. Это приближение позволяет легко определить скорость реакции и константу скорости k. Зависимость lnk от $1/T^{\circ}$ К, приведенная на рис. 5, позволила определить энергию

активации в обоих случаях, которая оказалась равной $1600 \ \kappa a \ n / moл b$ для чистого PbN_6 и $1790 \ \kappa a \ n / moл b$ для PbN_6 с примесью CdO. Можно заключить, что добавка CdO не влияет заметно на энергию активации процесса.

Следует отметить интересную особенность, с которой мы столкнулись при изучении радиолиза PbN₆ с добавкой CdO после прекращения

109

облучения наблюдалось продолжение выделения N₂ с заметной скоростью, особенно значительное при высоких температурах (60—80°C).

Маловероятно, что эта «темновая реакция» обусловлена улучшением условий диффузии азота-продукта радиолиза — к поверхности кристаллов РЬ №.

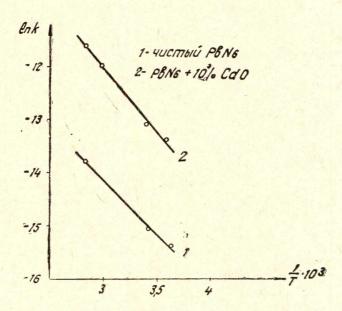


Рис. 5. Графическое определение энергии активации. 1 — чистый PbN_6 ; 2 — $PbN_6 + 10\%$. CdO

Более правдоподобно связать темновое выделение N_2 с распадом нестабильных радикалов и промежуточных продуктов, накапливающихся за время облучения в кристаллах.

Подобное явление, обусловленное распадом радикалов N₄, наблюдали в [12] при изучении фотолиза азидов щелочных металлов.

ЛИТЕРАТУРА

- 1. D. A. Goung. J. Chem. Soc., 1341, 1964. 2. B. Reitzner, I. V. R. Kanfman, E. F. Bartell. J. Amer. Chem. Soc., 421, 1962. 3. M. Stammler, J. E. Abel. Adv. in X-ray Analys., 4, 421, 1962.
- 4. В. В. Свиридов. Фотохимия и радиационная химия твердых неорганических веществ, 254, Минск, 1964.
- 5. Сб. Действие ионизирующих излучений на органические материалы, стр. 458-461, M., 1965.
 - 6. Ю. А. Захаров, Г. Г. Савельев. Кинетика и катализ, 8, 1966.
- 7. Г. Г. Савельев, Ю. А. Захаров. Научные доклады высшей школы, серия хим. и хим. технология, 7, № 5, 1964. 8. Ю. А. Захаров, Г. Г. Шечков. ЖФХ, 41, 1691, 1967. 9. Р. А. Васюткова, Ю. А. Захаров, Г. Г. Савельев. Настоящий сбор-
- ник, стр. 131.
 - 10. Ю. А. Захаров, В. А. Невоструев. Кинетика и катализ, 8, 211, 1967.
 - 11. В. А. Невоструев, Ю. А. Захаров. ЖФХ, **42**, № 2, 1968. 12. Р. W. M. Jacobs, Т. Kureichi. J. Chem. Soc., 4723, 1964.