ИЗВЕСТИЯ томского ордена трудового красного знамени политехнического института имени С. М. Кирова

Том 179

1969

О НЕКОТОРЫХ РЕЖИМНЫХ СООТНОШЕНИЯХ ДЛЯ НИЗКОЧАСТОТНОГО ПАРАМЕТРОНА БЕЗ ПОДМАГНИЧИВАНИЯ ПОСТОЯННЫМ ТОКОМ

А. И. КУТЯВИН

(Представлена научным семинаром кафедры автоматики и телемеханики)

В работах Т. Хаяси и Л. А. Бессонова [1, 2] показана возможность получения параметрических колебаний с частотой основного источника питания в схеме, приведенной на рис. 1.

Как следует из схемы, первичные обмотки W_1 включены последовательно и согласно, а контурные обмотки W_2 — последовательно и встречно. Вторичные обмотки совместно с емкостью образуют резонансный контур, настроенный на входную частоту. В контур включено сопротивление R_{μ} , играющее роль нагрузки.

Основное отличие данного параметрона от широко используемого в устройствах вычислительной техники и автоматики — отсутствие пос гоянной составляющей в намагничивающих токах, что приводит к возбуждению устройства на основной частоте.

Простота схемы низкочастотного индуктивного параметрона без подмагничивания, возможно, сделает перспективным его использование в автоматике и телемеханике.

В настоящей работе сделана попытка установить основные соотношения между действующими значениями электрических величин на основе экспериментального исследования параметрона, имеющего дроссели с коэффициентом трансформации, равным единице.

Чем ближе коэффициент трансформации к единице, тем заметнее разница в функции, выполняемой каждым дросселем в отдельности. Как правило, один из них может выполнять функцию трансформатора, другой — дросселя двойного питания. Такое распределение является случайным и зависит от фазы напряжения питания в момент возбуждения колебаний. Величина емкости также существенно влияет на распределение напряжений между дросселями.

Нами исследовался параметрон, работающий на частоте 50 гц. Основные данные сердечников — материал Э-42; штамп — Ш-32; набор — 5,3 см; площадь активной стали — 14,4 см²; длина средней силовой линии — 21,0 см; число витков $W_1 = W_2 = 300$; суммарное активное сопротивление первичных обмоток 11 ом, вторичных — 14 ом.

Построим векторную диаграмму для случая возбуждения параметрона с емкостью 7 *мкф* по экспериментальным данным, приведенным в табл. 1, $R_{\rm H} = 0$ (рис. 2).

1	a	б	Л	И	Ц	a	1

С, мкср	Mar and		A CAR SALL		12 - C. C. L. 12 - C.
	4	6	7	8	10
Параметры	Prove III				and the the
Uп.в (в)	1 35	140	145/147	152	170
U _{CB} (8)	124	155	162/147	170	175
<i>U</i> п.в.р (в)	115	.140	147	156	170
I_2 (a)	0,17	0,322	0,4/0,42	0,515	0,79
I_{2p} (a)	0,165	0 34	0,42	0,53	0,73
U _{2T} (8)	84	102	110,105	112	115
U _{2д} (в)	98	112	120/117	122	130
$I_{\rm OT}$ (a)	0,21	0.37	0,455/0,42	0,52	0,55
I _{од} (а)	0.33	0,52	0.64 0 73	-0.71	0.95
$I_{\rm OT}/I_2$	1,235	1,15	1,11/1,0	1,01	0,697
I_{OA}/I_2	1,94	1.62	1,6,1,74	1.38	1,2
I _{од} /I _о	1.57	1.405	1,41/1,7+	1,365	1,718
I_1 (a)	0,185	0,313	0,385/0,425	0,5	0,775
-31 11 11 11 11 11		ARE CONTROL	1 1 1 1 1		

Напряжение на емкости отстает на угол 90° от вторичного тока и образует с остальными векторами напряжений вторичной цепи треугольник, который может быть построен методом засечек

$$U_c = U_{2r} + U_{2\pi}, \tag{1}$$

где $U_{2\tau}$, $U_{2\pi}$ — напряжения на трансформаторе и дросселе двойного питания соответственно.

Условно считаем первый дроссель — трансформатором, второй дросселем двойного питания.

Учитывая, что активное сопротивление вторичных обмоток мало, имеем $E_{2r} = U_{2r}$.

46

Реактивная составляющая тока холостого хода $I_{\text{от}} \simeq I_{\text{хт}}$, опережает $E_{2\text{т}}$ на угол 90° и совпадает по направлению с магнитным потоком Φ_0 . Определив активную составляющую тока $I_{\text{ат}}$, например, по И. И. Белопольскому [3], находим направление тока холостого хода трансформатора и первичный ток параметрона.

Ток холостого хода дросселя I_{xa} равен разности первичного и вторичного токов (рис. 2):

$$\dot{I}_{x\pi} = \dot{I}_1 - \dot{I}_{2\pi}.$$
 (4)

Приложенное напряжение питания должно уравновешиваться геометрической суммой первичных напряжений на дросселе и трансформаторе:

$$\dot{U}_{n} = \dot{U}_{1r} + \dot{U}_{1n}.$$
 (5)

Подобным образом можно построить векторные диаграммы для любого режима рассматриваемого параметрона.

Амплитуда колебаний при параметрическом резонансе ограничивается нелинейностью характеристик элементов цепи, поэтому можно выделить три краевых задачи:

1. Нахождение условной вольт-амперной характеристики (в. а. х) параметрона с выходом на основной частоте при возбуждении с определением основных расчетных соотношений.

2. Ограничение амплитуды параметрических колебаний по максимуму.

3. Ограничение амплитуды колебаний по минимуму.

Наибольшая амплитуда колебаний имеет место при минимальном напряжении накачки, минимальная — при «критической» нагрузке,

47

увеличение сопротивления которой приводит к срыву параметрических колебаний.

1. Некоторые соотношения при возбуждении

Рассмотрим работу параметрона при возбуждении, отсутствии нагрузки и весьма малом активном сопротивлении обмоток колебательного контура.

Для выяснения краевых условий были посторены в. а. х. для одного дросселя (кривая 1, рис. 3) и двух дросселей совместно (кривая 2). Кривая 4 найдена экспериментально при включении в колебательный контур различных емкостей и характеризует величину напряжения на конденсаторе в момент возбуждения, а также условную в. а. х. индуктивной

D	T.T.	0	2
	r1	C .	0

части параметрона с выходом на основной частоте. Она начинается не из начала координат, так как при малых емкостях в схеме имеет место резонанс с удвоенной частотой источника питания (зона 1). В. а. х. минимальной емкости, при которой уже возможен параметрический резонанс на основной частоте, является касательной к в. а. х. одного дросселя. Включение больших емкостей приводит к насыщению трансформатора ($B_{\tau} > 1$ тесла), в схеме имеет место медленный рост напряжения на емкости, колебания неустойчивы (зона III).

В зонах II и III условная в. а. х. индуктивности параметрона с выходом на основной частоте с достаточной точностью представляется полуторной в. а. х. одного дросселя (кривая 5).

$$U_{Ly} = 1,5U_L = f(I_0).$$
(6)

Как следует из табл. 1, напряжение питания в момент возбуждения равно в первом приближении напряжению на емкости

$$U_{\mathrm{II,B}} = U_{cB}.\tag{7}$$

В табл. 1 приведены экспериментальные и некоторые расчетные данные для параметрона в момент возбуждения. Основные расчетные соотношения могут быть найдены достаточно просто при известной условной в. а. х. индуктивности параметрона. Будем считать заданными в. а. х. одного дросселя параметрона и основные параметры сердечников, включая обмоточные данные. При коэффициенте трансформации, равном единице, в. а. х. условной индуктивности параметрона определяется из выражения (6). Точка пересечения в. а. х. емкости (прямая 3) и в. а. х. условной индуктивности (кривая 5) дает нам значение напряжения на емкости и напряжения питания в момент возбуждения. Расчетные значения напряжений питания приведены в третьей строке таблицы.

В индуктивном параметроне, как и при феррорезонансе напряжений, действительное значение тока колебательного контура при возбуждении больше тока, определенного по формуле

$$I_2 = \frac{U_{cB}}{X_c} \,. \tag{8}$$

Для нахождения действительного значения вторичного тока проводим построения, как при феррорезонансе напряжений [4].

Отрезок оа на оси ординат, заключенный между началом координат и касательной к в.а.х. условной индуктивности параметрона, является необходимым напряжением для феррорезонанса при данной емкости.

Рис. 4.

Касательная проводится параллельно в.а.х. емкости, тангенс угла на-. Учитывая падение клона которой к оси ординат численно равен напряжения на активных сопротивлениях обмоток колебательного контура (прямая 6, рис. 3), находим расчетное значение вторичного тока 4. Заназ 2258 49

параметрона (отрезок *aa*₁). Расчетные и экспериментальные вторичные токи — *I*₂, *I*₂ — приведены в табл. 1.

Распределение вторичных напряжений по обмоткам $U_{2\tau}$ и $U_{2\pi}$ позволяет определить намагничивающие токи $I_{0\tau}$ и $I_{0\tau}$ по в. а. х. одного дросселя или, наоборот, можно найти напряжение по намагничивающим токам.

Векторную диаграмму в момент возбуждения параметрона можно построить по известным уже данным и с учет (мотноц єний /_{от}//₂ и /_{од}//₂.

Как показали расчеты, отношение I_{on}/I_{or} при изменении емкости от 3 до 24 *мкф* колеблется между 1,2 и 1,8.

Векторная диаграмма (р.с. 4) построена без учета магнитного рассеяния для параметрона с емкостью 7 *мсф* и с допущением, что $I_{\text{от}} = I_2$; $I_{\text{од}} = 1,5I_2$. При построении были учтены падения напряжений на активных сопротивлениях обмоток.

Построение треугольника первичных напряжений производилось способом засечек. В табл. 1 для емкости 7 *мкф* приведены полностью экспериментальные и расчетные данные, полученные из векторной диаграммы. Последние записаны в знаменатели дроби. В 8 и 9 строках табл. для 7 мкф вписаны не намагничивающие токи, а токи холостого хода.

2. Некоторые соотношения при минимальном напряжении накачки

При уменьшении напряжения питания происходит увеличение напряжения на емкости, но оно ограничено по оси ординат кривой 2 (рис. 3) При емкости, в. а. х. которых являются почти касательными к в. а. х. одного дросселя (кривая 1), имеет место еще одно ограничение колебаний по максимуму. Дело в том, что напряжение на емкости при параметрическом резонансе с выходом на удвоенной частоте, а следовательно, в. а. х. индуктивной части параметрона выражаются кривой 2. Она оказывается как бы «занятой» параметрическим резонансом на удвоенной частоте. Это ограничение показано на рис. 3 пунктирной линией.

С, мкор	4	6	7	8	10	Примечание
U _{c max} (8)	145 173	$\frac{190}{205}$	201 220	220 230	240 248	При мини- мальном на- пряжении питания
$I_{2 \max}$ (a)	0.193 0,22	0.365 0.38	$\frac{0,455}{0,49}$	0,6 0,57	0.8 0,77	
U _{c min} (8)	85 78	105 98	$\frac{1}{107}$	*115 113	130 123	
$I_{2 \min}$ (a)	0,12	0 2?	0,28 0,24	$\frac{0,325}{0,28}$	0,44 0,39	При "кри- тической" нагрузке

Таблица 2

(1')

Независимо от режима работы параметрона справедливо выражение

$${U}_{c} < {\dot U}_{c} + {\dot U}_{R{ extsf{H}}} = {\dot U}_{2{ extsf{T}}} + {\dot U}_{2{ extsf{I}}}$$
 ,

где U_{Rн} — падение напряжения на нагрузке.

50

На основании экспериментальных данных можно сказать, что максимальное напряжение на емкости определяется точкой пересечения в. а. х. емкости и кривой 2, спроектированной на ось ординат; вторичный ток — проекцией отрезка, ограниченного этой точкой, на ось абсцисс.

Экспериментальные и расчетные данные о выяснении ограничений напряжения на емкости по максимуму и минимуму приведены в табл. 2. В числителе дроби приводятся экспериментальные данные, в знаменателе — расчетные.

Уменьшение напряжения накачки до точки срыва приводит к значительному уменьшению напряжения на трансформаторе и незначительному насыщению дросселя. Минимальное напряжение на трансформаторе, при котором еще возможны колебания, определяется точкой пересечения в. а. х. емкости и одного дросселя (отрезок вв):

$$U_{2\mathrm{T}\,\mathrm{min}} = \mathbf{66}.\tag{9}$$

Напряжение на дросселе двойного питания в первом приближении равно напряжению на нем для случая возбуждения.

$$U_{2a} = U_{2a,B}.$$
 (10)

Минимальное напряжение накачки можно определить с достаточной точностью в зоне II как отрезок между началом координат и точкой пересечения касательной к в. а. х обоих дросселей (кривая 2) (табл. 3).

С, мкф Параметры	4	6	7	8	10	24
Un min ə	82	70	72	70	80	122
$U_{n \min p}$	50	70	77	84	97	148

Таблица З

3. Некоторые соотношения при «критической» нагрузке

Минимальное напряжение на емкости, при котором еще возможны колебания, зависит от величины нагрузки, а также от активных сопротивлений вторичных обмоток и не может быть меньше, чем напряжение на трансформаторе в момент возбуждения:

$$U_{c\min} \geqslant U_{2\text{T.B.}} \tag{11}$$

Следует отметить, что условие (11) справедливо при питании схемы напряжением, равном напряжению возбуждения или превышающем его максимум в 1,2 раза. В этом случае наглядно виден срыв и возбуждение параметрических колебаний. При большем напряжении накачки значительные колебания нагрузки ведут к плавному изменению напряжения на выходе.

Величина вторичного тока ограничена перпендикуляром к оси абсцисс, проходящим через точку на в.а.х. емкости U_{cmn} . В табл. 2 приведены экспериментальные и расчетные значения напряжений и токов для данного случая.

Ориентировочно можно считать «критическое» сопротивление нагрузки равным $(0,2 \div 0,3)X_{\circ}$ при последовательном соединении с емкостью $(2,3 \div 4)X_{c}$ — при параллельном. Большому сопротивлению при последовательной нагрузке соответствует меньшее при параллельной.

Выводы

1. В индуктивном параметроне с выходом на основной частоте один из дросселей работает в режиме трансформатора, второй — в режиме дросселя двойного питания, что не наблюдается в таком же параметроне с выходом на удвоенной частоте.

2. В работе предлагается использование условной в. а. х. индуктивной части, что делает дальнейшие расчеты достаточно простыми (выражение 6).

3. Основные соотношения напряжений и токов для параметрона в краевых режимах могут быть определены с достаточной точностью графическим способом с применением векторных диаграмм.

4. В работе приведены некоторые данные, отражающие физические процессы работающего параметрона.

ЛИТЕРАТУРА

1. Тихиро Хаяси. Вынужденные колебания в нелинейных системах. ИЛ., 1957.

he inductively a man design of the non-addition second of the second of

A service of a service and a service of a se

HORPICAL BURGER LITE BURGERSTON OF THE SAME TO A SUCCESS A CONTRACT OF

173

1-

2. Л. А. Бессонов. Нелинейные электрические цепи. «Высшая школа», 1964. 3. И. И. Белопольский. Расчет трансформаторов и дросселей малой мощнос-

ти. ГЭИ, 1963. 4. Л. А. Бессонов. Теоретические основы электротехники. «Высшая шко-

4. Л. А. Бессонов. Теоретические основы электротехники. «Высшая школа», 1964.