Том 180

1971

ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТЕЙ ЭЛЕМЕНТАРНЫХ ПРОЦЕССОВ ПРИ ОБРАЗОВАНИИ *F*-ЦЕНТРОВ В ЧИСТЫХ И ЛЕГИРОВАННЫХ ЩЕЛОЧНОГАЛОИДНЫХ КРИСТАЛЛАХ

Л. И. РОЩИНА, И. Я. МЕЛИК-ГАЙКАЗЯН, Э. П. КУРАКИНА, Ю. В. ВОЛКОВ.

'(Статья представлена научным семинаром лаборатории радиационной спектроскопии НИИ ФТТ)

Кинетика накопления F-центров на дорадиационных дефектах зависит от элементарных процессов образования и разрушения центров окраски и может быть описана уравнением [1, 2, 3]

$$n_{i} = \frac{N_{1}b_{1}}{b_{1} + \beta_{1}} \left[1 - e^{-(b_{1} + \beta_{1})t} \right] = n_{1} \left(1 - e^{-B_{1} \cdot t} \right), \tag{1}$$

$$B_{1} = b_{1} + \beta_{1},$$

где n_i — концентрации F-центров в некоторый момент времени t;

 N_1 — концентрация дефектов в кристалле до облучения, которые могут быть превращены в F-центры (плотность источника); b_1 — вероятность локализации электронов на дорадиационных

вакансиях;

 β_1 — вероятность радиационного разрушения F-центров.

При достаточно большом времени и малой интенсивности облучения концентрация F-центров достигает предельной величины.

$$n_1 = \frac{N_1 \cdot b_1}{b_1 + \beta_1} = \frac{N_1}{1 + \beta_1/b_1} \ . \tag{1a}$$

Из литературных данных [4—11] известно, что введение в кристалл металлических примесей может существенно увеличивать предельную концентрацию F-центров, накапливаемых на первой стадии, а при больших содержаниях примесей уменьшать.

Введение в щелочногалоидные кристаллы различных примесей оказывает существенное влияние на концентрацию F-центров, увеличивая исходную дефектность кристалла \mathbf{N}_1 . Кроме того, изменение условий локализации дырок и электронов может сказаться на величине вероятности локализации электронов на анионных вакансиях (b_1) и радиационном разрушении F-центров (β_1) .

Целью настоящей работы является определение из экспериментальных кривых накопления F-центров вероятностей элементарных процессов их образования и разрушения для кристаллов KCl «чистых» и KCl

с добавками Pb , Sr ++ .

Кристаллы КСІ, чистые и с примесями, выращивались из расплава по методу Киропулоса из соли марки «хч.». Примеси добавлялись в расплав в виде солей PbCl₂, SrCl₂. Из слитков монокристаллов выкалывались образцы строго одной толщины 0,5 мм и облучались на рентге-

новской установке УРС-70, трубка с Mo-анодом, напряжение 42 κs , ток варьировался от 4 до 14 $m\alpha$ для изменения интенсивности падающего излучения. Спектры поглощения измерялись на спектрофотометре СФ-4A.

Для нахождения параметров уравнения (1) из экспериментальной кинетической кривой накопления F-центров по методу наименьших квадратов была составлена программа расчета на электронно-вычислительной машине «Минск-1».

Сущность методики расчета [3] заключается в следующем.

Требуется найти значения n_1 и B_1 , приводящие к минимуму сумму квадратов отклонений экспериментальных точек от теоретической зависимости (невязка),

$$A_0(n_1 \cdot B_1) = \sum [n_i - n_1(1 - e^{-B_1 \cdot t_i})]^2 = min.$$
 (2)

Введем следующие обозначения:

$$x = \{x_1, \ x_2\} \equiv \{n_1 B_1\},\tag{3}$$

а также

$$\frac{\partial A_0(x)}{\partial x_i} = A_{i_0}(x); \quad \frac{\partial^2 A_0(x)}{\partial x_i \partial y_i} = A_{ij}(x); \quad (i = 1, 2; \ j = 0, \ 1, \ 2). \tag{4}$$

Тогда решение уравнения (2) эквивалентно решению системы

$$A_{i_0}(x) = 0, (i = 1,2).$$
 (5)

Эта система может быть решена с помощью итерационного метода Ньютона [9]

$$\mathbf{x}^{m+1} = \mathbf{x}^m - A_{\mathbf{x}}^{-1}(\mathbf{x}^m)A(\mathbf{x}^m), \tag{6}$$

где $A(x^m) \equiv {A_{10} \choose A_{20}}$, а матрица $A_x^{-1}(x^m)$ есть обратная матрице $A_{10}(x^m)$

 $A_{ij} = \begin{pmatrix} A_{11}A_{12} \\ A_{21}A_{22} \end{pmatrix}.$

Тогда

$$\begin{cases} n_{1}^{(m+1)} = n_{1}^{m} - \frac{\begin{vmatrix} A_{10}^{m} A_{12}^{m} \\ A_{20}^{m} A_{22}^{m} \\ A_{21}^{m} A_{22}^{m} \end{vmatrix}}{\begin{vmatrix} A_{11}^{m} A_{12}^{m} \\ A_{21}^{m} A_{22}^{m} \end{vmatrix}}, \\ B_{1}^{(m+1)} = B_{1}^{m} - \frac{\begin{vmatrix} A_{11}^{m} A_{10}^{m} \\ A_{21}^{m} A_{20}^{m} \\ A_{21}^{m} A_{20}^{m} \end{vmatrix}}{\begin{vmatrix} A_{11}^{m} A_{12}^{m} \\ A_{21}^{m} A_{22}^{m} \end{vmatrix}}. \end{cases}$$

$$(7)$$

Если ввести согласно (2—4) матричные компоненты в явном виде, то получим:

$$A = \sum \omega_{i} \varphi_{i}$$

$$A_{11} = \Delta_{-i}$$

$$A_{12} = A_{21} = \sum (n_{1} \xi_{i} - \omega_{i}) \varphi_{i}$$

$$(a)$$

$$(n_{1} t_{i} \varphi_{i} \omega_{i} + n_{1}^{2} \varphi_{i}^{2}),$$

где в целях удобства и сокращения записи принято

$$\begin{cases} \xi_{i} = 1 - e^{-B_{i}t_{i}} \\ \varphi_{i} = t_{i}e^{-B_{i}t_{i}} \\ \omega_{i} = n_{i} - n_{1}\xi_{i} \end{cases}$$
 (76)

Суммирование проводим по всем экспериментальным точкам заданной кривой.

Блок-схема организации программы приведена на рис. 1.

Вначале осуществляется ввод программыблок (1) и проводится контрольное суммирование (2). Если контрольная сумма совпадает с известной, то следует ввод исходных данных (3); если нет, то программа вводится заново, до тех пор, пока не будет получена известная контрольная сумма. После ввода исходных данных они также суммируются (4) и проверяется контрольная сумма. Если контрольная сумма не совпадает, то осуществляется повторный ввод исходных данных; если же контрольная сумма совпадает, то осуществляется перевод введенных десятичных чисел в двоичную систему (5). Далее управление передается основной программе.

Операторная схема программы, осуществляющей обсчет серии экспериментальных имеет следующий вид:

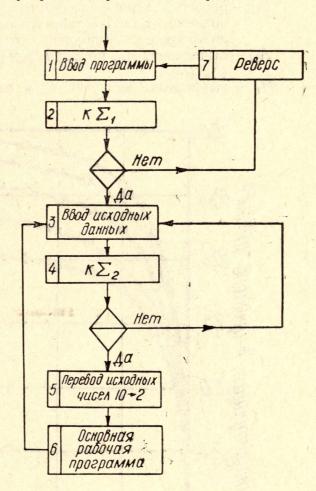


Рис. 1. Блок-схема организации программы

Здесь K_1 — занесение первоначального вида команды засылки N_i оператора 3_9 в стандартную ячейку;

 3_2 — засылка нуля в счетчик числа кривых;

 K_3 — занесение первоначального вида команд оператора \mathcal{S}_4 ;

 \mathcal{S}_4 — засылка параметров n_1 и B_1 в рабочие ячейки;

 F_5 — переадресация команд оператора $\mathcal{3}_4$; P_6 — проверка на окончание цикла по числу обсчитываемых кривых (если условие выполнено, то управление передается оператору \mathcal{A}_7 , если нет, то A_8);

 \mathcal{P}_{7} — остановка при окончании обсчета всей серии кривых;

 A_8 — добавление единицы в счетчик числа кривых и выдача на печать порядкового номера кривой;

 3_9 — засылка нулей в ячейки, где накапливаются суммы A_{ij} ; K_{10} — занесение первоначального вида команд оператора 3_{11} в цикле по x_i ;

 \mathcal{S}_{i1} — засылка чисел $n_i t_i$ очередной кривой в стандартные рабочие ячейки;

 F_{12} — переадресация команд оператора \mathcal{S}_{11} ; P_{13} — проверка условия на конец цикла по t_i (если условие выполнено, то осуществляется переход к оператору H_{15} , а если условие не выполнено, то к оператору A_{14});

 A_{14} — вычисление A_{ij} , по формулам (7a, 7б) и переход к операто-

py 3_{11} ;

 H_{15} — вычисление и печать x^m и невязки;

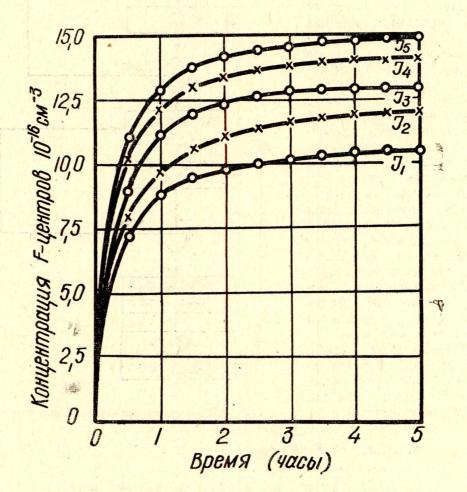


Рис. 2. Кинетические кривые накопления F-центров в кристаллах $KCl+1,5\cdot 10^{-3}$ мол% $PbCl_2$ при различных интенсивностях рентгеновых лучей $I_1:I_2:I_3:I_4:I_5=1:1,5:2:2,5:3$

 ${\cal S}_{16}$ — засылка значений x^m в ячейки, где находились x^{m-} ; P_{17} — проверка условия $\Delta x^m = x^m - x^{m-1} <$ ϵ (если условие выполнено, то осуществляется переход к оператору H_{18} , если нет, то к K_{10});

 H_{18} — выдача на печать таблицы функции с расчетными парамет-

 K_{19} — занесение команды засылки n_i в промежуточную ячейку для восстановления, переход к оператору 3_4 .

Исходные данные для каждой серии кривых размещаются в памяти следующим образом: каждое число в двоично-десятичном коде записывается в пару ячеек в последовательности: порядок и мантисса чисел.

Приближенные значения параметров n_1 и B_1 каждой кривой располагаются в порядке чередования в первой группе ячеек. Во второй группе расположены значения t_i , которые полагаются одинаковыми для всех кривых заданной серии. В третьей группе ячеек расположены параметры n_i в следующем порядке: вначале помещается набор n_i для первой кривой, затем набор n_i для второй кривой и т. д.

Время счета одной итерации составляет 4—6 сек, время печатания

таблицы значений вычисленных функций — порядка 20—30 сек.

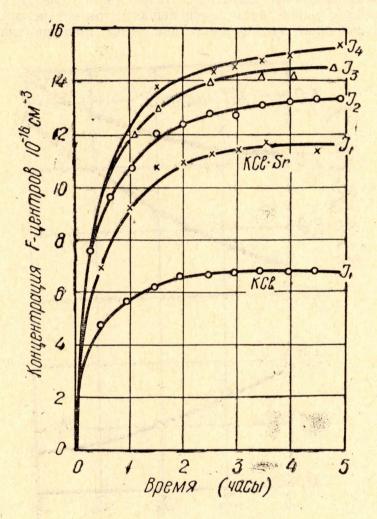


Рис. 3. То же для кристаллов KCl $+ 3 \cdot 10^{-3}$ мол % SrCl₂

В процессе работы программы печатаются:

1) номера обсчитываемых кривых;

2) суммы квадратов отклонения теоретической кривой от экспериментальной (невязка), вычисляемые на каждой стадии итерации;

3) промежуточные и окончательные значения n_1 и B_1 ;

4) таблица функций с вычисленными наилучшими (минимальное

значение невязки) параметрами n_1 и B_1 .

Для определения параметров уравнения (1) нами были получены кинетические кривые накопления F-центров при изменении интенсивно-

сти падающего излучения. На рис. 2 и 3 представлены кинетические кривые накопления F-центров в кристаллах $KCl \cdot Pb$ и $KCl \cdot Sr$ при различных интенсивностях рентгеновских лучей. Для «чистого» кристалла KCl соотношение кинетических кривых аналогично и здесь не приводится, только для сравнения на рис. 3 приведена кинетическая кривая накопления F-центров для KCl для интенсивности J_1 .

По методу, описанному выше, вычислялись параметры кривой уравнения (1). Из определения параметра N_1 следует, что величина его не зависит от интенсивности, поэтому, построив зависимость n_1 от ин-

тенсивности, можно найти величину N_1 , а затем b_1 и β_1 .

Результаты вычислений параметров B_1 , b_1 и β_1 кристаллов KCl, KCl·Pb и KCl·Sr представлены на рис. 4 и 5 в зависимости от интенсивности рентгеновского излучения. Из рис. 4 и 5 следует, что β_1 и b_1 увеличиваются с увеличением интенсивности, так как вероятность локализации электронов на анионных вакансиях пропорциональна числу

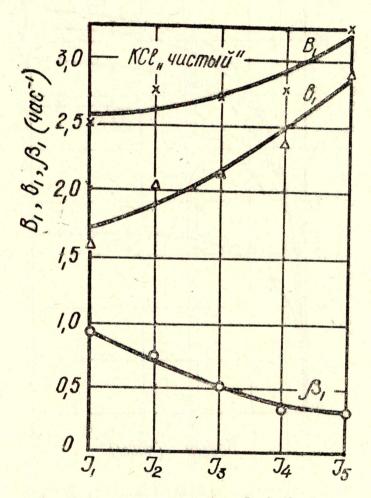


Рис. 4. Зависимость параметров B_1 , b_1 , β_1 кинетических кривых накопления F-центров в KC1 от интенсивности рентгеновых лучей

электронов в зоне проводимости [1], которое растет с увеличением интенсивности рентгеновского излучения. В то же время параметр β_1 вначале несколько уменьшается с увеличением интенсивности, а затем остается практически постоянным при больших интенсивностях. Митчелл с сотрудниками [1], использовавший рентгеновские лучи высокой интенсивности, не получил изменения β_1 от J, однако в работе [10] этих же авторов имеется указание на увеличение β_1 при малых интенсивностях

излучения. Причина такой сложной зависимости величины $oldsymbol{eta}_1$ от J в настоящее время еще не выяснена.

При введении в кристалл KCl ионов Pb ++ наблюдается некоторое уменьшение вероятности локализации электронов на анионной вакансии за сек. Это связано с тем, что добавление электронно-акцепторной примеси обусловливает появление «атомарных» примесных центров, конкурирующих в захвате электронов с анионными вакансиями, и, как следствие этого, уменьшение b₁. Улучшение условий локализации электронов на активаторных уровнях, сопровождается уменьшением вероятности рекомбинации электронов и дырок, тем самым увеличивается концентрация свободных дырок. Эти нелокализованные дырки могут разрушать F-центры [11], параметр β_1 увеличивается.

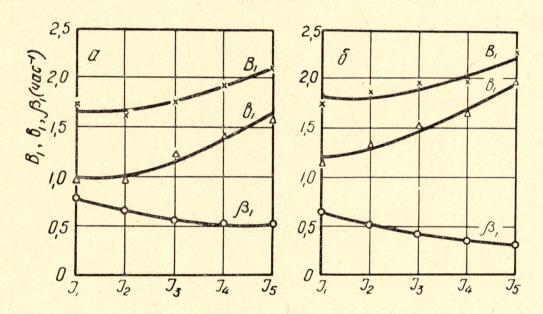


Рис. 5. То же для кристаллов $KCl + 1,5 \cdot 10^{-3}$ мол % $PbCl_2$ (a) и KCl ++ 3·10- 3 мол % SrCl₂ (б)

В кристалле KC1 · Sr улучшены условия локализации дырок за счет их взаимодействия с комплексами Sr^{++} V^{+} с последующим образованием центров Хейса-Никольса [12, 13]. Преимущественная локализация дырок на комплексах Me^{++} V^+ в KCl \cdot Sr подтверждается уменьшением в этих кристаллах эффекта радиационного понижения ионной электропроводности [14]. Этот процесс сопровождается увеличением устойчивости F-центров в поле радиации (параметр β_1 — уменьшается).

ЛИТЕРАТУРА

- 1. P. Mitchell, D. Wiegend, R. Smoluchowski Phys. Rev. 121, 484,
- 2. Д. И. Вайсбурд, И. Я. Мелик-Гайказян, Л. И. Рощина. ФТТ, (в печати).

 - 3. Д. И. Вайсбурд. Кандидатская диссертация. Томск. 1965. 4. D. Schulman J. Phys. Shem. 57, 8, 1953. 5. E. E. Schneider Disc. Far. Soc. 31, 176, 1961. 6. Л. М. Шамовский. ДАН СССР, 99, 235, 1954.
- 7. М. Л. Кац, Б. З. Семенов. Физика щелочногалоидных кристаллов. Труды II Всесоюзного Совещания 1961, 191, Рига, 1962.
 8. Ч. Б. Лущик. Тр. ИФА АН ЭССР № 3, 3, 1955.

9. И. С. Березин, Н. П. Жирнов. Методы вычислений, т. 2, Физматиздат, 1962.

10. P. V. Mitchell, D. A. Wiegand, R. Smoluchowski. Phys. Rev. 117,

442, 1950. 11. И. А. Парфианович. Материалы VII совещания по люминесценции,

11. И. А. Парфила. 1958 г. 12. W. Hayes, G. M. Nichols Phys. Rev. 117, 993, 1960. 13. W. Hayes J. Appl. Phys., Suppl. 33, 329, 1962. 14. И. Я. Мелик-Гайказян, Е. К. Завадовская, М. И. Игнатьева. ФТТ, 6, в. 4, 1964.