ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

Tom 180

ПРИБЛИЖЕННАЯ ОЦЕНКА ПАРАМЕТРОВ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ, НАИБОЛЕЕ ОПАСНЫХ ДЛЯ ВЫСОКОВОЛЬТНОЙ ИЗОЛЯЦИИ¹)

и. и. қаляцқий, в. ф. панин

(Представлена научным семинаром научно-исследовательского института высоких напряжений)

Отметим сразу, что речь идет, в сущности, о перенапряжениях негрозового происхождения. Действительно, для грозовых перенапряжений характерны крутизны, большие критических — от сотен до тысяч кв/мксек.

Критические крутизны относятся к области внутренних, или, точнее, коммутационных перенапряжений, располагающейся между грозовыми перенапряжениями и перенапряжениями рабочей частоты.

Современные средства ограничения перенапряжений позволяют с большой вероятностью, определяемой требованиями надежности работы изоляции, не допускать внутренних перенапряжений выше некоторого уровня, по которому координируется высоковольтная изоляция. В табл. 1 приведены допустимые кратности внутренних перенапряжений

для систем высших классов [2], где $K=rac{U_{\pi}}{U_{\Phi}},\,U_{\pi}$ — наибольшая ам-

плитуда внутренних перенапряжений, U_{Φ} — наибольшее фазное рабочее напряжение. Эти кратности установлены без учета аномального уменьшения импульсной прочности изолирующих сред в области критической крутизны [3—5]. Необходимо принимать в расчет указанное снижение импульсной прочности, так как при координации изоляции перенапряжения с кратностью ниже допустимой, но с крутизной в области критической могут вызвать понижение надежности работы изоляции.

Произведем ориентировочную оценку допустимых кратностей перенапряжений с учетом снижения импульсной прочности изолирующих сред в области критической крутизны.

I. Уровни воздушной изоляции при внутренних перенапряжениях с расчетной кратностью K устанавливаются по уровню прочности изоляции при напряжении 50 εu . Связь между расчетной кратностью внутренних (в том числе коммутационных) перенапряжений и параметрами распределения пробивных напряжений изоляции при 50 εu (U_{50} ; σ_{50}) можно выразить соотношением

$$\frac{U_{50}\left(1 - \frac{3\sigma_{50}}{100}\right)}{K_3} = K \cdot U_{\Phi},\tag{1}$$

где K_3 — коэффициент запаса.

Для перенапряжений с крутизнами, близкими к критической, можно записать

$$\frac{K_{\rm B} \cdot U_{50} \left[1 - \frac{3\sigma_{\rm K}}{100} \right]}{K_{3}} = K' \cdot U_{\Phi},\tag{2}$$

где $K_{\rm B} \cdot U_{50}$; $\sigma_{\rm K}$ — параметры распределения пробивных напряжений в области критической крутизны, $K_{\rm B}$ — коэффициент импульса в области критической крутизны,

Таблица 1

Таблица 2

Расчетные	кратнос	ти внутренних	
перенап	ряжений	для систем	
высо	кого наг	пряжения	

Номинальное напряжение системы, <i>кв</i>	K
110	3
220	3
330	2,7
500	2,5
750	2,1

			значения
коэффициента	KB	для	воздушной
изоля			
классо	в на	квапя	кения

Класс напряже- ния, <i>кв</i>	$K_{\mathtt{B}}$
110	0,7
220	0,79
330	0,75
500	0,8
750	0,775

K' — допустимая кратность перенапряжений с крутизной, близкой к $a_{
m kp}$.

Из (1) и (2) получаем

$$K' = K_{\rm B} \cdot \frac{100 - 3\sigma_{\rm K}}{100 - 3\sigma_{\rm 50}} \cdot K \ . \tag{3}$$

Значения K_B (табл. 2) для разных классов напряжения были приближенно определены по данным [6] и [7, 8] (для промежутков стержень — плоскость), сведенных в [9].

Среднее значение коэффициента импульса K_b для воздушных промежутков составляет около 0,76; с, по данным систематических измерений [10], в области критической крутизны составляет около 8%, $\sigma_{50}=2\div3\%$ по [6]. Положим, $\sigma_{50}=3\%$. Тогда

$$K' \simeq 0.635K$$
. (4)

Таким образом, для воздушной (внешней) изоляции могут быть опасными перенапряжения с крутизной, близкой к критической, и с кратностью $K_{\rm on}$ в интервале $0.635K \div K$, т. е. опасные кратности

$$K_{\rm on} = (0.817 \pm 0.182) \, K.$$
 (5)

Согласно (5) амплитуды опасных перенапряжений определены как

$$U_{\rm on} = (0.817 \pm 0.182) \cdot K \cdot U_{\rm op}, \text{ KB}.$$
 (6)

Для систем 220 кв, например,

$$U_{\text{on}} = (0.817 \pm 0.182) \cdot 3 \cdot \frac{220 \cdot \sqrt{2}}{\sqrt{3}} \cdot 1.15 (\kappa s) = 505 \pm 112 (\kappa s).$$

II. Оценка допустимых кратностей K' перенапряжений с критической крутизной для твердой изоляции производилась на основе следующих положений.

а) оценка снижения прочности в области $\alpha_{\rm кр}$ производилась по отношению к уровню прочности при крутизнах импульсного напряжения, соответствующих границе максимальных длительностей коммутационных перенапряжений $(10^{-1} \div 10^{-2} \ \kappa e/m\kappa ce\kappa)$;

б) так как в измерениях использовались образцы из модельных материалов, обусловливающих ввиду неоднородностей повышенный разброс разрядных напряжений, был произведен переход от величины стандартного отклонения, полученной в опыте с модельными диэлектриками, к величине стандартного отклонения характерной для твердой изоляции, используемой в реальных высоковольтных конструкциях.

Известно, что стандартное отклонение разрядных напряжений обычно используемой твердой изоляции (например, компаунды на основе эпоксидных смол) лежит в пределах $4 \div 10\%$. В предположении, что повышенная степень неоднородности использованных образцов привела к повышению разброса примерно в 2 раза, считалось, что стандартное отклонение для реальной твердой изоляции в области критической крутизны составляет около 16% вместо 30-32%, согласно 5.

Значение К', найденное с учетом указанных допущений, составляет

0,75 K.

Кратность опасных перенапряжений

$$K_{\rm on} = (0.875 \pm 0.125) \, K \tag{7}$$

И

$$U_{\rm on} = (0.875 \pm 0.125) \, K \cdot U_{\, \Phi}, \, \kappa s.$$
 (8)

III. Допустимая кратность перенапряжений с критической крутизной для жидкой изоляции определена грубой оценкой по данным [3] и составляет около 0,8 K.

Соответственно имеем

$$U_{\text{on}} = (0.9 \pm 0.1) \, \text{K} \cdot U_{\Phi}, \, \kappa s.$$
 (9)

В табл. З представлены значения уровней опасных перенапряжений для изоляционных конструкций высших классов напряжения в различных изолирующих средах.

Таблица 3 Приближенные значения опасных уровней внутренних перенапряжений для конструкций высших классов напряжения в различных изолирующих средах

Класс напряже-	Воздушная изоляция	Твердая изоляция	Жидкая изоляция U _{оп} (±11%)	
ния	U _{οπ} (±22,3%)	$U_{\text{on}}(\pm 14,3\%)$		
КВ	Кв	КВ	КВ	
110	252	270	278	
220	505	543	556	
330	682	731	752	
500	956	1023	1053	
750	1200	1288	1323	

Согласно данным табл. 3, по соотношениям, полученным в [1], определены длительности фронта и частоты колебаний (пульсаций) перенапряжений с критическими крутизнами (табл. 4).

Как следует из табл. 4, интервалы опасных длительностей фронта для воздушной, твердой и жидкой изоляции лежат в пределах $38,3 \div 182$ мксек, $9 \div 43,2$ мксек и $1,8 \div 8,4$ мксек. Соответственно опасные

Таблица 4

	Параметры перенапряжений с опасными кратностями и критической крутизной								
Класс напря-	Воздушная изоляяия		Твердая изоляция			Жидкая изоляция			
жения	$\tau_{\Phi}(\pm 22,3\%)$	$f_{\cos}(\pm 22.3\%)$	$f_{\sin}(\pm 22.3\%)$	$\tau_{\phi}(\pm 14.3\%)$	$f_{\cos}(\pm 14.3\%)$	$f_{\sin}(\pm 14.3\%)$	$\tau_{\phi}(\pm 11\%)$	$f_{\cos}(\pm 11\%)$	$f_{\sin}(\pm 11\%)$
КВ	мксек	кгц	кгц	мксек	кгц	кец	мксек	кгц	кгц
110	38,3	9,5	5,88	9,06	39	24,7	1,75	198	125
220	76,6	4,63	2,94	18,12	19,5	12,35	3,52	99	63
330	103,2	3,42	2,18	(24,5)	(14,48)	(9, 15)	4,77	73,5	46,8
500	145	2,44	1,55	(34,4)	(10,3)	(6,53)	6,68	52,4	33,3
750	182,0	1,95	1,24	(43, 15)	(8,2)	(5,2)	8,38	41,7	26,5

частоты заключены в пределах $9,25 \div 1,24$ кги, $39 \div 5.2$ кги и $198 \div 26.5 \ \kappa e u$.

Установленные частоты относятся к области возможных частот колебаний коммутационных перенапряжений и, следовательно, есть основания полагать, что высоковольтная изоляция в области высоких и средних частот перенапряжений имеет пониженную работы.

В табл. 4 указаны значения $\tau_{\rm th}$ и f, при которых ожидаются наиболее низкие пробивные градиенты. Пониженные пробивные градиенты следует ожидать и при других крутизнах, близких к критической. Для воздушной изоляции опасные крутизны определяются интервалом $\sim 20-1~\kappa B/m\kappa ce\kappa$, что для изоляции класса 220 κB , например, соответствует интервалу опасных длительностей фронта ~13—260 мксек и интервалу опасных частот ~ 14-0,4 кги.

Аналогичную оценку интервалов опасных параметров возможно

произвести также для твердой и жидкой изоляции.

ЛИТЕРАТУРА

1. И. И. Қаляцкий, В. Ф. Панин. О методе определения параметров наибо-

лее опасных для изоляции импульсных перенапряжений, (настоящий сборник).

ВЭП, № 2, 1962. 3. В. Ф. Панин. Изв. ТПИ, т. 139, 1965.

4. А. А. Воробьев, И. И. Каляцкий, В. Ф. Панин. Изв. ТПИ, т. 152, 1960.

5. В. Ф. Панин. Изв. ТПИ, т. 159 (в печати).
6. Г. Н. Александров, В. Е. Кизеветтер, В. М. Русакова,
А. Н. Тушнов. Электричество, № 5, 1962.
7. И. С. Стекольников, Е. Н. Браго, Э. М. Базелян. ЖТФ, 32, вып.

8, 1962.

8. H. Takeshita, Y. Miyake, T. Oikawa, Y. Kamata. Hitachi Rev., 11, № 5, 1962.

9. Под ред. В. С. Комелькова. «Разрядные напряжения длинных воздушных промежутков и изоляторов», 1961—1963. АН СССР, ИНИ, М., 1964.

10. Э. М. Базелян. Диссертация, М., 1964.