ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 187

ПОСТРОЕНИЕ НА АВМ ПРОЕКЦИОННЫХ ИЗОБРАЖЕНИЙ ПРОСТРАНСТВЕННЫХ ФИГУР МЕТОДОМ ЦЕНТРАЛЬНОГО ПРОЕКТИРОВАНИЯ

И. Э. НААЦ, В. М. РЕЙДЕР

(Представлена научным семинаром вычислительной лаборатории)

В настоящей работе рассматриваются вопросы получения проекционных изображений трехмерных геометрических объектов на ABM с регистрацией на экране электронно-лучевого индикатора. Основное внимание при этом уделяется методу центрального проектирования при построении изображений на поверхности плоского носителя и сопоставлению полученных осциллограмм с осциллограммами, соответствующими параллельному проектированию.

Одним из удобств, помимо отмеченных в работе [1], применения проекционных методов при регистрации геометрической информации на ABM является возможность набора проекционных соотношений как части программы решаемой задачи. В результате выходные величины X и Y могут быть поданы на двухкоординатный самописец или электронно-лучевой индикатор для регистрации проекционного изображения решения в форме z(x, y).

Известно, что проекционные изображения геометрических объектов, полученные методом центрального проектирования, обладают большей наглядностью по сравнению с аналогичными изображениями в методе параллельного проектирования. Однако в таком случае изображение проигрывает в метричности, т. е. выяснение количественных отношений по изображению становится более сложным. Определенный интерес представляет сравнение этих двух методов на примере изображений поверхности z(x, y). Предварительно сделаем несколько замечаний к выводу проекционных соотношений в центральном проектировании, используя систему проектирования работы [1].

Совершенно очевидно, что при переходе к центральному проектированию угловые параметры α и ν аппарата проектирования должны быть дополнены метрическими характеристиками, в качестве которых выберем расстояния полюса проектирования P и начала координат системы S точки O до плоскости проекций W (рис. 1). В целях упрощения будем полагать, что полюс P и точка O лежат на нормали \vec{n} к W. В частном случае, как указано на рис. 1, точка O попадает на плоскость W, тогда соответствующий параметр l = 0. В отличии от параллельного проектирования параметр $l \neq 0$ в центральном проектировании и войдет в проекционные соотношения.

Пусть имеется точка A в системе S с координатами x, y, z (тоже самое вектор \vec{r} с направляющими углами φ , ψ , ϑ). Для нахождения

1974

проекционных соотношений необходимо определить проекцию вектора *r* на оси *X*, *Y* плоскости *W*. С этой целью проектируем вектор *r* вначале на плоскость *W*. Величина этой проекции определится выражением

8

$$OA' = \frac{L \cdot r \cos \omega}{L - l - r \sin \omega}, \qquad (1)$$

где

Рис. 1. Геометрические построения при центральном проектировании точки на плоскость

 $\sin\omega = \sin\alpha \cdot \cos\varphi + \sin\beta \cdot \cos\psi + \sin\gamma \cdot \cos\vartheta.$ (2)

Затем определяется проекция отрезка ОА' на оси Х и У:

$$X = OA' \cdot \cos \Omega Y = OA' \cdot \sin \Omega$$
 (3)

Выполнив соответствующие геометрические построения, нетрудно найти значение угла Ω:

$$\sin \Omega = \frac{\cos \psi \cdot \sin \nu - \cos \vartheta \cdot \cos \nu}{\cos \omega}, \\
\cos \Omega = \frac{\cos \psi \cdot \cos \nu \cdot \sin \alpha + \cos \vartheta \cdot \sin \alpha \cdot \sin \nu - \cos \alpha \cdot \cos \varphi}{\cos \omega}.$$
(4)

Подставляя (4) в (3), после элементарных преобразований получим проекционные соотношения, связывающие координаты точки (x, y, z) с

Рис. 2. Проекционные осциллограммы, полученные методом параллельного проектирования.

Рис. 3. Проекционные осциллограммы, полученные методом центрального проектирования.

координатами ее проекционного центрального изображения на плоскости:

$$X = L \cdot \frac{y \cdot \cos \gamma \cdot \sin \alpha + z \sin \alpha \cdot \sin \gamma - x \cos \alpha}{L - l - x \sin \alpha - y \cos \alpha \cdot \cos \gamma - z \cos \alpha \cdot \sin \gamma},$$

$$Y = L \cdot \frac{y \sin \gamma - z \cos \gamma}{L - l - x \sin \alpha - y \cos \alpha \cdot \cos \gamma - z \cos \alpha \cdot \sin \gamma}.$$
(5)

Интересно отметить, что при бесконечном удалении полюса P от плоскости W проекционное изображение точки, согласно (5), все меньше и меньше отличается от проекционного изображения этой точки при параллельном проектировании. Иными словами, при $L \rightarrow \infty$ соотношения (5) перейдут в соотношения параллельного проектирования [1], а именно:

$$X = y \cos \nu \cdot \sin \alpha + z \sin \alpha \cdot \sin \nu - x \cos \alpha,$$

$$Y = y \sin \nu - z \cos \nu.$$
(6)

Полученная система соотношений (5) достаточно проста как для вычислений, так и для моделирования в отличие от уравнений, предлагаемых в работе [2], где параметры аппарата проектирования определялись посредством задания плоскости проекций W и полюса P в системе S, несмотря на ряд значительных упрощений, вводимых автором в аппарат проектирования.

Используя соотношения (5) и (6), можно провести сравнительный анализ получающихся при этом проекционных изображений на примере какой-либо поверхности второго порядка.

На рис. 2 и 3 приведены проекционные осциллограммы, дающие изображения цилиндрической поверхности (тоже винтовой линии) соответственно в параллельном и центральном проектировании на экране электронно-лучевой трубки. Набор задачи по синтезу поверхности и проекционных соотношений выполнялся на ABM MH-14 при следующих данных: v=0 и $\alpha=60^\circ$, 45°, 30° (сверху вниз на рис. 2, 3). Приведенные осциллограммы позволяют судить о наглядности проекционных изображений. Осциллограммы рис. 3 более наглядны, хотя по ним трудно судить о линейных размерах цилиндра. Однако это не является существенным недостатком этих осциллограмм, так как чисто аппаратурным путем можно ввести систему координатных меток для определения метрических соотношений в оригинале. Описанные методы построения проекционных осциллограмм могут быть использованы также для регистрации более сложных пространственных фигур.

ЛИТЕРАТУРА

1. И. Э. Наац. Вопросы построения проекционных изображений при регистрации графической информации. (Настоящий сборник).

2. А. В. Кузнецов. Номографирование построений центральных аксонометрических проекций. См.: Номографический сборник № 2. Вычислительный центр АН СССР. М., 1964.