Том 190

1968

ПРЕОБРАЗОВАНИЯ ТЕПЛОВЫХ СХЕМ ЗАМЕЩЕНИЯ ЭЛЕКТРИЧЕСКИХ МАШИН

Д. И. САННИКОВ

(Представлена научным семинаром кафедр электрических машин и общей электротехники)

При анализе тепловых схем замещения электрических машин в ходе разработки методик теплового расчета оказываются полезными различные преобразования этих схем.

В настоящей работе рассматривается три вида преобразований схем стационарного нагрева и приводятся примеры их использования.

Тепловая схема составляется на основе теплового баланса различных элементов электрической машины или на основе решения дифференциальных уравнений теплопроводности [2] и состоит из узлов с источниками тепла Р, соединенных тепловыми проводимостями G. Предполагается, что узлы, изображающие элементы охлаждающего потока, имеют фиксированную температуру и что схема линейна.

Тепловой баланс для і-го узла схемы

$$P_{i} = \sum_{\substack{K=a\\K\neq i}}^{n} (\theta_{i} - \theta_{K}) G_{iK}, \tag{1}$$

тде

 θ — температуры узлов,

k — порядковые номера узлов, изменяющиеся от а до n,

Gik — взаимные проводимости, приводит к уравнению

$$-\theta_{i} \sum_{\substack{K=a \ K \neq i}}^{n} G_{iK} + \sum_{\substack{K=a \ K \neq i}}^{n} \theta_{K} G_{iK} + P_{O} = 0.$$
 (2)

Схема в целом описывается системой аналогичных уравнений [4]

$$\parallel \mathbf{G}_{i_{K}} \parallel \times \mathbf{\theta}_{i} + \mathbf{P}_{i} = 0. \tag{3}$$

Каждый диагональный член матрицы проводимостей согласно (2) равен

$$G_{ii} = -\sum_{\substack{K=a\\K\neq i}}^{n} G_{iK} \tag{4}$$

и может быть назван собственной проводимостью узла, взятой со знаком минус.

Исключение узла из схемы

Выделим из схемы узел с индексом O (рис. 1, a). Исключая уравнение данного узла

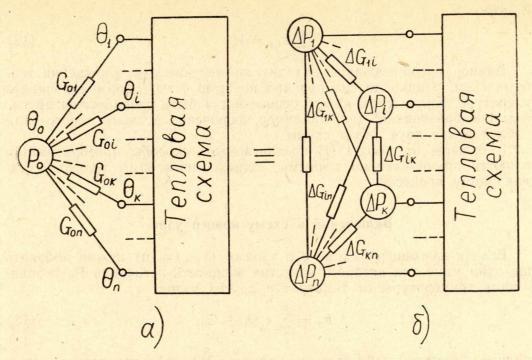


Рис. 1. Исключение узла из тепловой схемы

$$\theta_0 \sum_{i=1}^{n} G_{0i} = \sum_{i=1}^{n} \theta_i G_{0i} + P_0$$
 (5)

из системы (3) методом подстановок, получим систему, которая соответствует новой схеме с уменьшенным на единицу количеством узлов (рис. 1, б). Таким образом происходит преобразование звезды в эквивалентный многоугольник со следующими параметрами:

а) приращение источников остающихся узлов

$$\Delta P_i = P_0 \kappa_{0i}, \tag{6}$$

где

$$\kappa_{0i} = \frac{G_{0i}}{(-G_{00})} \tag{7}$$

коэффициент приведения источника исключаемого узла к остающемуся узлу,

$$(-G_{00}) = \sum_{\kappa=1}^{n} G_{0i}$$
 (8)

собственная проводимость исключаемого узла;

б) приращение проводимостей между остающимися узлами

$$\Delta G_{i\kappa} = \frac{G_{oi}G_{o\kappa}}{(-G_{oo})} ; \qquad (9)$$

в) приращение собственных проводимостей

$$\Delta G_{ii} = -\frac{G_{0i}^2}{(-G_{00})} \ . \tag{10}$$

Следует отметить, что суммарная мощность источников тепла схемы не меняется, так как

$$\sum_{i=1}^{n} \Delta P_{i} = P_{o} \frac{\sum_{\kappa=1}^{n} G_{oi}}{(-G_{oo})} = P_{o},$$
 (11)

$$\sum_{i=1}^{n} \kappa_{0i} = 1. {(12)}$$

Данное преобразование находит применение при упрощении тепловых схем, однако до сих пор оно не было четко сформулировано в литературе. Кроме того, на его основе могут быть разработаны другие виды преобразования, как, например, включение в схему нового узла и объединение двух узлов схемы.

В отличие от метода [1] предлагаемые способы преобразования являются принципиально точными, однако применимы только к стационарному процессу.

Включение в схему нового узла

Если к имеющейся схеме с n узлами ($1 \le i \le n$) нужно добавить еще один узел, для которого известна мощность источника P_o и зависимость температуры от температур других узлов

$$\theta_{\rm o} = \sum_{\rm i=1}^{\rm n} \kappa_{\rm oi} \theta_{\rm i} + C_{\rm o}, \tag{13}$$

(причем должно соблюдаться условие $\sum_{i=1}^{n} k_{oi} = 1$, что всегда может быть достигнуто использованием узла с нулевой температурой), то прежде всего необходимо привести эту зависимость к виду (5) путем умножения (13) на масштабный коэффициент

$$\kappa_{\mathbf{m}} = \frac{P_{\mathbf{o}}}{C_{\mathbf{o}}},\tag{14}$$

В результате будет получено уравнение узла, то есть звезды проводимостей

$$G_{oi} = \kappa_{oi} \cdot \kappa_{m} = \kappa_{oi} \cdot \frac{P_{o}}{C_{o}}$$
 (15)

с источником при вершине — Ро и собственной проводимостью

$$(-G_{oo}) = \kappa_{m}. \tag{16}$$

Непосредственное присоединение этой звезды к узлам схемы приводит к нарушению существующих связей, которое может быть скомпенсировано одновременным присоединением второй звезды с изменным знаком параметров, то есть с проводимостями $(-G_{0i})$ и источником $(-P_{0})$. Правильность такого преобразования доказывается тем, что исключение обоих присоединенных узлов по ранее рассмотренному методу приводит к исходной схеме.

Вторую присоединенную звезду целесообразно преобразовать в многоугольник для устранения лишнего узла. Таким образом, включение в схему нового узла осуществляется путем присоединения звезды с параметрами G_{oi} и P_{o} и одновременного прибавления к источникам схемы компенсирующих приращений

$$\Delta P_{i} = -\frac{P_{o}G_{oi}}{(-G_{oo})} = -P_{o}k_{oi}, \tag{17}$$

а к проводимостям — компенсирующих приращений.

$$\Delta G_{i\kappa} = -\frac{G_{oi}G_{o\kappa}}{(-G_{oo})} = -\kappa_{oi} \cdot \kappa_{o\kappa} \cdot \kappa_{m}. \tag{18}$$

Использование данного преобразования может быть проиллюстрировано следующим примером. Пусть требуется учесть сток тепла с торцевой поверхности сердечника якоря или статора, не имеющего радиальных каналов рис. 2,a). Ввиду низкой теплопроводности пакета в направлении поперек листа $(\lambda'_{\rm cm})$ аксиальный тепловой поток в сердечнике имеет заметную величину только в непосредственной близости от торца, создавая здесь значительный перепад температуры сердечника $\theta_{\rm c}$ в доль оси якоря (рис. $2,\delta$). По сравнению с изменением $\theta_{\rm c}$ в данной зоне можно принять

$$\theta_{\rm M}={\rm const},\;\theta_{\rm f}={\rm const}$$

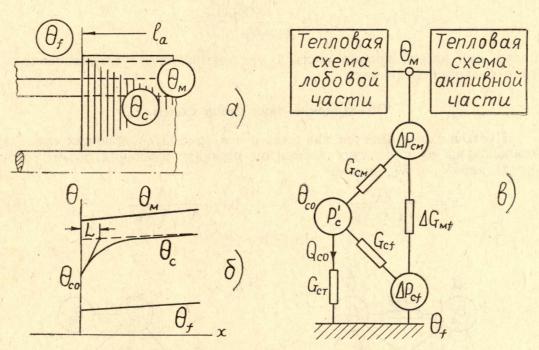


Рис. 2. Включение в тепловую схему якора узла, учитывающего охлаждение торцов сердечника.

и, рассматривая сердечник как теплопроводящий стержень, ориентированный вдоль оси х, связанный с обмоткой и воздухом проводимостями $\Lambda_{\rm CM}$ и $\Lambda_{\rm Cf}$ на единицу длины и имеющий распределенные по длине потери с плотностью $p_{\rm C}$, получить экспоненциальный характер распределения $\theta_{\rm C}$ вдоль якоря.

Поскольку постоянная распространения экспоненты

$$L = \frac{1}{V(\Lambda_{\text{cM}} + \overline{\Lambda_{\text{cf}}})\overline{r_{\text{c}}}} \ll l_{\text{a}},$$

 r_c — аксиальное тепловое сопротивление на единицу длины пакета, можно пренебречь влиянием противоположного торца.

Выражение для теплового потока, переходящего из торца пакета в воздух

$$Q_{co} = \frac{1}{r_c} \frac{d\theta_c}{dx (x = 0)} = (\theta_{co} - \theta_f) G_{cr}$$

приводит к уравнению вида (5) для температуры торца

$$\theta_{co}(\Lambda_{cm} + \Lambda_{cf})L = \theta_{m}\Lambda_{cm}L + \theta_{f}\Lambda_{cf}L + p_{c}L - Q_{co}$$

Таким образом, на основании полученного выражения и разработанного ранее способа преобразования схем нужно для учета теплового

потока Q_{CO} в исходную тепловую схему якоря включить узел с температурой θ_{CO} (рис. $2, \beta$), источником

$$P'_{c} = p_{c}L$$

и проводимостями

$$G_{cM} = \Lambda_{cM} L; G_{cf} = \Lambda_{cf} L,$$

затем присоединить компенсирующие источники и проводимости

$$\Delta P_{cM} = -P'_c \frac{\Lambda_{cM}}{\Lambda_{cM} + \Lambda_{cf}};$$

$$\Delta P_{cf} = -P'_c \frac{\Lambda_{cf}}{\Lambda_{cM} + \Lambda_{cf}}$$

$$\Delta G_{Mf} = -\frac{G_{cM}G_{cf}}{G_{cM} + G_{cf}},$$

после чего ввести проводимость $G_{\rm CT}$, учитывающую условия теплоотдачи с торца сердечника.

Объединение двух узлов схемы

Пусть в схеме имеется два узла a и b (рис. 3,a), дающих средние температуры θ_a и θ_b двух элементов машины, имеющих объем соответственно V_a и V_b , причем

$$a = \frac{V_a}{V_a + V_b}$$
; $b = \frac{V_b}{V_a + V_b}$, (19)

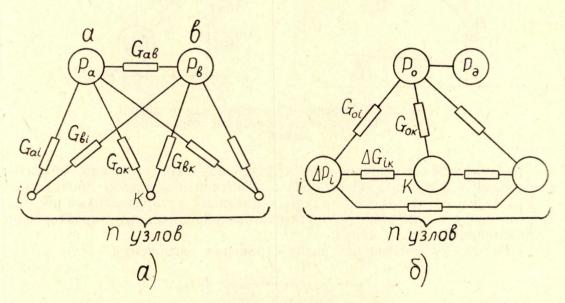


Рис. 3. Объединение двух узлов тепловой схемы

Распределение источников тепла между узлами в общем случае не пропорционально объему

$$P_{a} = P_{o}(a + \Delta); \qquad P_{b} = P_{o}(b - \Delta)$$
 (20)

$$P_o = P_a + P_b \tag{21}$$

Требуется заменить оба узла одним, имеющим среднюю температуру

$$\theta_{o} = a\theta_{a} + b\theta_{b} \tag{22}$$

и источник P_0 (рис. 3, 6).

Уравнения узлов а и в могут быть представлены в виде системы

$$\begin{cases} \theta_{a}(G_{a} + G_{ab}) - \theta_{b}G_{ab} = \sum_{i=1}^{n} \theta_{i}G_{ai} + P_{a} \\ -\theta_{a}G_{ab} + \theta_{b}(G_{b} + G_{ab}) = \sum_{i=1}^{n} \theta_{i}G_{bi} + P_{b}, \end{cases}$$
(23)

где

$$G_a = \sum_{i=1}^n G_{ai};$$
 $G_b = \sum_{i=1}^n G_{bi}.$ (24)

Решая (23) относительно θ_a и θ_b и подставляя полученные выражения в (22), имеем

$$\theta_{o} = \sum_{i=1}^{n} \theta_{i} \frac{\Delta_{i}}{D} + P_{o} \frac{C}{D} + P_{o} \frac{\Delta(aG_{b} - bG_{a})}{D}$$

$$(25)$$

Здесь

$$D = (G_a + G_{ab})(G_b + G_{ab}) - G_{ab}^2$$
 (26)

— определитель системы (23)

$$A_{i} = G_{ai}(aG_{b} + G_{ab}) + G_{bi}(bG_{a} + G_{ab})$$
 (27)

$$C = a^2 G_b + G_{ab} + b^2 G_a. (28)$$

Умножая (25) на D/C, получаем уравнение объединенного узла «О»

$$\frac{D}{C}\theta_{o} = \sum_{i=1}^{n} \theta_{i} \frac{A_{i}}{C} + P_{o} + P_{\partial}. \tag{29}$$

Ввиду наличия дополнительного источника тепла

$$P_{\partial} = P_o - \frac{\Delta}{C} - (aG_b - bG_a), \tag{30}$$

первоначально сформулированное условие преобразования выполняется не полностью. Причиной этого является непропорциональное распределение источников, характеризующееся коэффициентом Δ . Попытка во что бы то ни стало избавиться от P_{∂} путем замены множителя D/C множителем

$$\frac{D}{C + \Delta(aG_b - bG_a)}$$

приводит к зависимости проводимостей схемы от источников тепла и чрезмерно усложняет расчет. Поэтому следует принять окончательно выражения (29, 30).

В соответствии с вышеизложенным преобразование схемы заключается в следующих трех операциях:

- 1) исключение узлов «а» и «в», которое приводит к изменению источников и взаимных проводимостей остальных узлов на $\Delta P_1'$ и $\Delta G_{ik}';$
- 2) присоединение узла «О» (29) с источником ($P_o + P_{\partial}$) и проводимостями

$$G_{0i} = \frac{A_i}{C}, \qquad (31)$$

собственная проводимость которого

$$G_0 = \frac{D}{C}; (32)$$

3) присоединение компенсирующего многоугольника, имеющего, в соответствии с правилами включения в схему нового узла, параметры $\Delta P_1''$ и $\Delta G_{1\kappa}''$ (17, 18).

Общее изменение источников и взаимных проводимостей узлов

схемы в результате первой и третьей операции составляет

$$\Delta P_{i} = \Delta P'_{i} + \Delta P''_{i} = P_{o} \frac{\Delta}{C} (bG_{ai} - aG_{bi}), \tag{33}$$

$$\Delta G_{iK} = \Delta G'_{iK} + \Delta G''_{iK} = \frac{(bG_{ai} - aG_{bi})(bG_{bK} - aG_{aK})}{C}.$$
 (34)

При этом соблюдается баланс источников тепла

$$\sum_{i=1}^{n} \Delta P_i = P_0.$$

Данный вид преобразования, несмотря на некоторую сложность формул, оказывается эффективным в тех случаях, когда параметры исключаемых узлов являются взаимозависимыми.

В качестве примера может быть рассмотрена тепловая схема замещения лобовой части обмотки якоря машины постоянного тока. Если обмотка выполнена из мягких секций, не имеет при этом решетки в лобовых частях и обмоткодержатели не охлаждаются воздухом (рис. 4, α), то практически все тепло, выделяемое в нижнем слое ло-

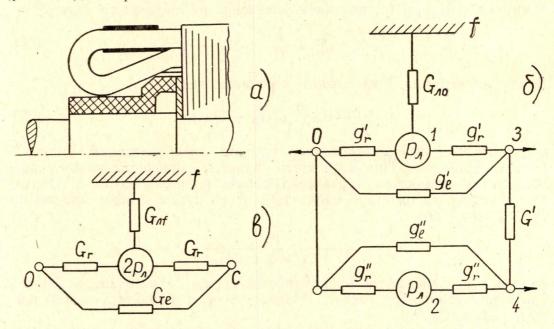


Рис. 4. Объединение верхнего и нижнего слоя побовых частей при преобразовании тепловой схемы якоря

бовых частей, передается в верхний слой, распространяясь вдоль проводников. Можно показать, что передача тепла через междуслойную изоляцию при этом пренебрежимо мала.

Тепловая схема, составленная на основе [2], изображена на рис. 4, δ . Длина участков секции, расположенных в верхнем и нижнем слое, считается одинаковой, поэтому источники тепла р_л для обоих слоев и аксиальные тепловые сопротивления R равны.

 $G_{\pi o}$ — проводимость от верхнего слоя к воздуху.

Аксиальные проводимости с достаточной точностью выражаются формулами:

для верхнего слоя

$$g'_{r} = \frac{6}{R} \left(1 + \frac{m}{60} \right); \qquad g'_{1} = -\frac{2}{R} \left(1 - \frac{m}{60} \right), \qquad (35)$$

где

$$m = RG_{\pi 0} \tag{36}$$

для нижнего слоя

$$g''_{r} = \frac{6}{R};$$
 $g''_{1} = -\frac{2}{R},$ (37)

G' — проводимость, учитывающая связь между слоями обмотки в активной части якоря.

При тепловом расчете якоря нецелесообразно разделять обмотку на два слоя, но следует в то же время учитывать влияние плохо охлаждаемого нижнего слоя лобовых частей на среднюю температуру обмотки. Попарное объединение узлов 1 и 2, представляющих среднюю температуру слоев, и узлов 3 и 4, которые соответствуют граничным сечениям между лобовой и пазовой частью, позволяет достаточно просто решить данный вопрос.

При замене узлов 1 и 2 одним узлом «Л»

$$a = b = 0.5;$$
 $\Delta = 0;$ $G_{ab} = G_{12} = 0.$ (38)
 $G_a = G_1 = G_{\pi 0} + 2g'_{r} = \frac{12}{R} \left(1 + \frac{m}{10} \right),$

$$G_s = G_2 = 2g_{\Gamma}'' = \frac{12}{R},$$
 (39)

$$C = 0.25(G_1 + G_2) = \frac{6}{R} \left(1 + \frac{m}{20} \right),$$
 (40)

$$P_{\pi} = 2p_{\pi}; \qquad P_{\partial} = 0; \qquad \Delta P_{i} = 0. \tag{41}$$

Используя при расчете по (31) формулы упрощенного умножения и деления, благодаря малости вторых членов в выражениях (35—40), получаем

$$G'_{nf} = G_{no} \left(1 - \frac{m}{20} \right),$$
 (42)

$$G_{\pi 3} = \frac{6}{R} \left(1 - \frac{m}{30} \right); \qquad G_{\pi 4} = \frac{6}{R} \left(1 + \frac{m}{20} \right); \qquad G_{\pi 0} = \frac{12}{R} \left(1 + \frac{m}{20} \right).$$
(43)

Подобный вид приобретают и выражения для взаимных проводимостей остальных узлов.

Аналогичным образом узлы 3 и 4 объединяются в узел «С», и схема приобретает окончательный вид (рис. 4, в), причем для упрощения схемы проводимости $G_{\rm of}$ и $G_{\rm cf}$, имеющие незначительную величину, добавляются к проводимости $G_{\rm nf}$.

Параметры схемы:

$$G_{\pi f} = G_{\pi o} \left[1 - \frac{m}{24} \left(1 + \frac{2,85}{1 + 2G'R} \right) \right],$$
 (44)

$$G_{r} = \frac{12}{R}; \qquad G_{l} = -\frac{4}{R}.$$
 (45)

Проводимость $G_{\pi f}$ учитывает с достаточной точностью влияние различных условий охлаждения верхнего и нижнего слоя обмотки на среднюю температуру лобовых частей и может быть рекомендована для использования в различных методиках теплового расчета якоря.

97

Выводы

1. При составлении и анализе тепловых схем замещения и разработке методов их расчета могут эффективно использоваться такие виды преобразования, как исключение узла из схемы, включение в

схему нового узла и объединение двух узлов схемы.

2. Данные преобразования являются принципиально точными, однако применение различных способов упрощения формул существенно повышает их эффективность, то есть, в конечном счете, способствует повышению точности тепловых расчетов без существенного их усложнения.

ЛИТЕРАТУРА

1. И. П. Боляев. Повышение точности теплового расчета электрической машины методом эквивалентных тепловых схем при малом числе элементов. «Электромеханика», № 1, 1965.

2. Д. И. Санников. Эквивалентные тепловые схемы тел с одномерным температурным полем. Известия ТПИ, т. 138, 1965.