ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 190

1968

РАСЧЕТ ПОЛЯ ГЛАВНЫХ ПОЛЮСОВ В ЗОНЕ КОММУТАЦИИ МАШИН ПОСТОЯННОГО ТОКА СЕРИИ П

А. И. СКОРОСПЕШКИН, Э. Г. ЧЕБОТКОВ

(Рекомендована научным семинаром кафедр электрических машин и общей электротехники)

Одним из факторов, влияющих на коммутационную устойчивость машин постоянного тока, является поле рассеяния главных полюсов в зоне коммутации. Этот фактор особенно большое влияние оказывает на коммутацию машин с глубоким регулированием скорости вращения, поскольку такие машины работают и в режимах сильного насыщения. В результате становится очевидным необходимость учета поля главных полюсов при расчете коммутации.

Для расчета магнитных полей в электрических машинах применяются методы:

1) метод сеток,

2) метод конформных отображений,

3) метод Гринберга и модификации его.

Основным общим недостатком этих методов является их неприменимость для насыщенных магнитных систем. Каждый из указанных методов имеет и другие недостатки.

Метод сеток отличается сложностью и громоздкостью. Для получения картины поля в зоне коммутации этим методом требуется определить потенциал нескольких тысяч точек.

Метод конформных отображений, в случае применения его к машинам постоянного тока, требует предварительного моделирования.

Метод Гринберга и его модификации применимы лишь при прямоугольной магнитной системе и равномерном воздушном зазоре.

Ниже предлагается иной метод расчета поля в зоне коммутации, применительно к машинам серии П 1-6 габаритов.

Направление разработки метода выбрано следующее: получение эмпирического выражения для магнитного сопротивления в зависимости от геометрии машины. Решение задачи производилось моделированием поля на токопроводящей бумаге.

Моделирование позволяет получить картину поля, представленную на рис. 1. Силовые трубки построены таким образом, что их нижняя ширина одинакова и равна

$$\mathbf{b}_1 = \frac{\pi \mathbf{D}_a}{360}$$

Измерения, проведенные на моделях поля, показывают, что ширина

312

силовых трубок изменяется по трапецеидальному закону от bm до b1. Такая силовая трубка в развернутом виде представлена на рис. 2, где:

bm — верхняя ширина силовой трубки,

b₁ — нижняя ширина, h — высота,

la — длина трубки, равная длине якоря.

Если бы параметры силовых трубок h и bm были известны, то индукцию в нижнем сечении трубки можно рассчитать по формуле

$$B = \frac{\Phi}{S_1} = \frac{F_{HC}}{R_{\mu} \cdot S_1}, \qquad (1)$$

где R_и — магнитное сопротивление силовой трубки,

$$R_{\mu} = \frac{1}{\mu_0 \cdot l_a} \cdot \frac{h}{b_1 - b_m} \cdot \ln \frac{b_1}{b_m} , \qquad (2)$$

F_{нс} — намагничивающая сила на полюс,

S₁=b₁·l_a — нижнее сечение силовой трубки.

Следовательно, необходимо получить зависимости в функции от следующих параметров:

h,
$$\mathbf{b}_{\mathbf{m}} = \langle \mathbf{f}(\delta_{\mathbf{K}\mathbf{p}\,\mathbf{r}.\,\mathbf{n}.}; \frac{\mathbf{b}_{\mathbf{0}}}{2}; \delta_{\mathbf{g}\mathbf{n}}; \mathbf{b}_{\mathbf{g}\mathbf{n}}; \mathbf{N}),$$
 (3)

гле

δкр rn -- воздушный зазор под краем главного полюса,

- δgn воздушный зазор под добавочным полюсом,
- bo межполюсный промежуток,
- bgn ширина добавочного полюса,
- номер силовой трубки при отсчете от наконечника главного N полюса,

Φ — поток силовой трубки.

Построенные картины поля и изменения их силовых трубок позволили предположить линейную зависимость функций выхода от независимых переменных, определяющих геометрию машины. В то же время функции выхода в зависимости от номера силовой трубки изменяются

по ломаной прямой, представленной на рис. 3,а и 3,б. Ветвь I соответствует силовым трубкам от конца башмака главного полюса до начала добавочного, ветвь II — от начала добавочного до середины его. Поэтому рассматривается четыре функции выхода:

$$h_{I} = f(\delta_{kp r n}; \frac{b_{0}}{2}; \delta_{gn}; b_{gn}; N)$$

$$b_{mI} = f(\delta_{kp r n}; \frac{b_{0}}{2}; \delta_{gn}; b_{gn}; N)$$

$$h_{II} = f(\delta_{kp r n}; -\frac{b_{0}}{2}; \delta_{gn}; b_{gn}; N) \qquad (4)$$

$$b_{mII} = f(\delta_{kp r n}; \frac{b_{0}}{2}; \delta_{gn}; b_{gn}; N) .$$

Исходя из указанных условий, был составлен план полного факторного эксперимента для четырех независимых переменных, варьируемых на двух уровнях согласно [1], представленный в табл. 1. Интервалы варьирования независимых переменных выбирались в пределах изменечия геометрии машин серии II с 1 по 6 габарит и представлены в табл. 2.

Моделирование проводилось на высокоомной токопроводящей бумаге с помощью интегратора ЭГДА 9/60 [2]. Модель изготавливалась в масштабе 12:1 для снижения погрешности от неравномерности сопротивления бумаги. Определение размеров счловых трубок производилось с помощью курвиметра с ценой деления 1 мм.

Результаты экспериментов сведены в соответствующие графы табл. 1. Обработка их позволила получить коэффициенты регрессии b₁ для функций выхода у.

Рассмотрение полученных коэффициентов позволило пренебречь некоторыми из взаимодействий для упрощения окончательных выраже-

$b_i(\overline{y}'_{11})$	$b_i(\overline{y'_1})$	$b_i(\overline{y}_{ii})$	$b_i(y_I)$	-982400-800-65480	№ опыта
0,208	2,7	14,7	648	+++++++++++++++++++++++++++++++++++++++	X0
0,006	0,45	-1,26	0,212	+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	X1
-0,02	0,087	3,29	2,43	++ ++ #++ ++	X2
0,075	0,125	0,137	0,025	+++++ +++++ }	X3
—0,167 [.]	1,52	2,3	4,74	+++++++	 X4
-0,0006	0,06	-0,312	0,288	+ + + + + + + +	x ₁ x ₂
-0,026	0	0,137	0,08	+1+1+++++++++++++++++++++++++++++++++++	X1X3
0,006	0,25	0,075	-0,725	+ + + + + + + + +	x1X4
—0,008 [.]	0,037	'0,'087	-0,05	+++1 1 ++++±1 1 +++	X ₂ X ₃
0,041	0,15	—1,45	2,34	++1 ++ ++ ++	X ₂ X ₄
- 0,06	0,075	0,07	0,037	++++	X3X4
0,019	0,062	0,23	0,012	+ + + + + + + + +	X ₁ X ₂ X ₃
0,0006	-0,288	0,07	0,25	+!!++!!++!!++!	x ₁ x ₂ x ₄
0,023	0,02	0,02	0,05	+1+1+1+1+1+1+1+1	X ₁ X ₃ X ₄
0,016	0,037	0,02	0,06	++ ++ +++	X ₂ X ₃ X ₄ .
-0,018	0,087	0,075	0,025	+ + + + + + + + +	X1X2X3X4
				17,0 17,0 17,0 17,0 17,0 17,0 17,0 17,0	yr-10 ² (h ₁)
	N N			7,3 16,0 14,4 18,5 11,5 11,5 11,5 11,5 11,5 11,5 11,5	$\overline{y_{11}} \cdot 10^2$ (b ₁₁)
e		1		0,79 0	$\frac{1}{(b_{m1})}$
				$\begin{array}{c} 0.02\\$	y ₁₁ '·10 ³ (b _{m11})

Таблица 1

1

Таблица 2

	X	X ₂	X ₃	X41	• X ₄₁₁
Основной уровень (x ₁ =0)	1,846.10-2	9,5	1,231.10-2	$\left(1+\frac{b_0-b_{gn}}{\pi D_a}180\right)\frac{1}{2}$	$\left(1+\frac{2b_0-b_{gn}}{\pi D_a}\cdot 180\right)-\frac{1}{2}$
Интервал варьирования	$1,231 \cdot 10^{-2}$	3,5	0,615.10-2	$\left(\frac{\mathbf{b}_0 - \mathbf{b}_{\mathbf{g}n}}{\mathbf{\pi} \mathbf{D}_{\mathbf{a}}} 180 - 1\right) \frac{1}{2}$	$\left(\frac{\mathrm{b}_{\mathrm{gn}}}{\pi\mathrm{D}_{\mathrm{a}}}180-1\right)\frac{\mathrm{l}}{2}$
Верхний уровень (x _i =±1)	3,08 ·10-2	13	1,846.10-2	$\frac{b_0 - b_{gn}}{\pi D_a} 180$	$\frac{b_0}{\pi D_a} \cdot 180$
Нижний уровень (х _і ⇒—1)	0,615.10-2	6	0,616.10-2	1	$\frac{b_0 - b_{gn}}{\pi D_a} 180 + 1$

ний. Таким образом, получены следующие зависимости для параметров силовых трубок:

$$\frac{h_{i}}{D_{a}} \cdot 10^{2} = 6,8 + 0,212x_{1} + 2,43x_{2} + 4,74x_{4} + 0,288x_{1}x_{2} - 0,725x_{1}x_{4} + 2,34x_{2}x_{4} - 0,25x_{1}x_{2}x_{4},$$
(5)

$$\frac{b_{mI}}{D_{a}} \cdot 10^{3} = 2,7 - 0,45x_{1} + 0,125x_{3} - 1,52x_{4} + 0,25x_{1}x_{4} - 0,15x_{2}x_{4} - 0,288x_{1}x_{2}x_{4},$$
(6)

$$\frac{h_{II}}{D_{a}} \cdot 10^{2} = 14,7 - 1,26x_{1} + 3,29x_{2} + 0,137x_{3} + 2,3x_{4} - 0,312x_{1}x_{2} - -1,45x_{2}x_{4} + 0,238x_{1}x_{2}x_{3},$$
(7)

$$\frac{b_{mII}}{D_{a}} \cdot 10^{3} = 0,208 - 0,212x_{2} + 0,076x_{3} - 0,167x_{4} - 0,026x_{1}x_{3} + -1,26x_{1}x_{3} + 0,026x_{1}x_{3} + 0,026$$

$$\begin{array}{r} D_{3} \\ 0,04x_{2}x_{4} - 0,06x_{3}x_{4} + 0,019x_{1}x_{2}x_{3} + 0,024x_{1}x_{3}x_{4} + 0,016x_{2}x_{3}x_{4} - \\ - 0,0.8x_{1}x_{2}x_{3}x_{4}, \end{array}$$
(8)

где

$$\begin{split} x_{1} &= \frac{\frac{\delta_{KP \Gamma n}}{D_{a}} - 1,848 \cdot 10^{-2}}{1,232 \cdot 10^{-2}} ,\\ x_{2} &= \frac{\frac{b_{0} - b_{gn}}{\pi D_{a}} 180 - 9,5}{3,5} ,\\ x_{2} &= \frac{\frac{\delta_{gn}}{\pi D_{a}} - 1,23 \cdot 10^{-2}}{3,5} ,\\ x_{3} &= \frac{\frac{\pi D_{a}}{2}}{0,615 \cdot 10^{-2}} ,\\ x_{4I} &= \frac{N - (1 + \frac{b_{0} - b_{gn}}{\pi D_{a}} 180) \frac{1}{2}}{\left(\frac{b_{gn}}{\pi D_{a}} 180 - 1\right)^{-\frac{1}{2}}} ,\\ a_{HI} &= \frac{N - \left(\frac{2b_{0} - b_{gn}}{\pi D_{a}} 180 - 1\right)^{-\frac{1}{2}}}{\left(\frac{b_{gn}}{\pi D_{a}} 180 - 1\right)^{-\frac{1}{2}}} , \end{split}$$

При этом проведенные эксперименты выявили некоторые особенности силовых трубок под добавочным полюсом и трубки, находящейся непосредственно рядом с ним.

Силовая трубка, находящаяся непосредственно рядом с добавочным полюсом, изменяет свое поперечное сечение от b_m до b_1 на участке 0,85h и на остальной высоте от 0,5 b_1 до b_1 .

Силовые трубки, находящиеся под добавочным полюсом, практически сохраняют свою верхнюю ширину на участке h_{N-3} , равном высоте силовой трубки, предшествующей данной на три номера. На остальном участке высоты $h_N - h_{N-3}$ изменяется по трапецеидальному закону от b_m до b_1 .

Рис. З

Таким образом, полученные выражения (5—8) позволяют определить параметры силовых трубок, необходимые для расчета поля главных полюсов в нейтральной зоне (1—2).

При постановке экспериментов проведена проверка влияния насыщения зубцовой зоны якоря и наконечника полюсного башмака на картину поля. Насыщение зубцовой зоны под главным полюсом не оказывает заметного воздействия на картину поля.

Насыщение башмака главного полюса — снижение потенциала его наконечника относительно потенциала полюса до 50 проц. — приводит к изменению картины поля и параметров силовых трубок h и b_m не более чем на 10 проц. Следовательно, и в этом случае зависимости (1—8) пригодны для расчета поля при условии известного распределения потенциала по полюсному наконечнику. Получить распределение потенциала по полюсному наконечнику и произвести расчет насыщенной магнитной системы с использованием выражений (1—8) возможно с применением номографического метода Бенедикта [3].

Для проверки достоверности зависимостей (1—8) был проведен эксперимент по определению индукции в полюсном промежутке машины П51 со следующими параметрами геометрии: $\delta_{\rm kp\,rn}=2,5$ мм, $\delta_{\rm gn}=2,5$ мм, $b_{\rm gn}=22$ мм, $D_{\rm a}=162,5$ мм.

Распределение индукции снималось с помощью датчиков э.д.с. Холла, закрепленного на зубце якоря. Экспериментальные данные показаны на рис. 4 в виде точек.

По зависимостям (1-8) проведен расчет поля в нейтральной зоне зля данной машины. Результаты расчета представлены на рис. 4 в виде

318

кривых, где кривая I соответствует току возбуждения 0,2 a, II — току возбуждения 0,4 a.

Анализ представленных данных рис. 4 показывает, что максимальное отклонение расчетных и опытных данных не превышает 5 проц.

Итак, получены аналитические выражения, позволяющие рассчитать поле главных полюсов в зоне коммутации при ненасыщенной и насыщенной магнитной системе.

Результаты проведенного расчета и экспериментов позволяют сделать вывод о малой величине поля главных полюсов под добавочным полюсом. Однако обычно ширина зоны коммутации выбирается несколько больше ширины наконечника добавочного полюса и, следовательно, поле главных полюсов в зоне коммутации может быть значительным. Поэтому при $b_{\rm K} > b_{\rm gn}$ достаточным средством уменьшения поля главных полюсов в зоне коммутации можно рекомендовать увеличение ширины наконечника добавочного в зоне коммутации можно рекомендовать увеличение ширины наконечника добавочного полюса $b_{\rm gn}$ до ширины коммутационной зоны $b_{\rm K}$.

ЛИТЕРАТУРА

1. В. В. Налимов, И. А. Чернова. Статистические методы планирования экстремальных экспериментов. «Наука», М., 1965. 2. П. Ф. Фильчаков, В. И. Панчишин. Интеграторы ЭГДА. Киев,

2. П. Ф. Фильчаков, В. И. Панчишин. Интеграторы ЭГДА. Киев, 1961.

3. О. В. Бенедикт. Номографический метод расчета сложных сильнонасыщенных магнитных цепей электрических машин. ГЭИ, 1953.