Том 191

1969

ИССЛЕДОВАНИЕ ТРАНСФОРМАТОРОВ ПРЕДЕЛЬНОЙ МОЩНОСТИ НА МИНИМУМ ПРИВЕДЕННОГО (К СТАЛИ) ВЕСА И РАСЧЕТНЫХ ЗАТРАТ

Л. И. ДЕЛЬ.

(Рекомендована научным семинаром кафедр электрических станций и электрических сетей и систем)

Ниже приводятся некоторые результаты исследования трансформаторов предельной мощности на минимум приведенного (к стали) веся активных материалов и минимум расчетных затрат, учитывающих расходы системы на приобретение, установку и эксплуатацию трансформатора, включая капзатраты на добавочную мощность, необходимую для покрытия потерь трансформатора в период максимума нагрузки.

Воспользуемся выражениями $(2) \div (9)$ работы [3], формулой номинальной мощности трансформатора (1) [1] и определим высоту об-

моток, см.

$$h = \frac{4p^2 S_c}{K_c \varphi(\delta')^2 u^2}, \qquad (1)$$

где

$$u = \varphi \cdot \left[1 + \sqrt{1 + \frac{4p}{\delta' \varphi} (2b + 3\delta_{12})} \right] = \varphi \cdot z, \qquad (2)$$

$$K_c = 4,44f - \frac{\pi}{4} k_c$$
 (3)

Найдем веса активных материалов.

Вес стали сердечника в кг:

$$Q_c = \gamma_c l_c q_c, \tag{4}$$

где γ_c — удельный вес стали, $\kappa z/c M^3$;

1_с — длина стали сердечника, приведенная к площади сечения стержня;

 $l_c = (n+1) h + (n+1) d + 4 nb + B,$ (5)

$$\mathbf{b} = 8\mathbf{l}_{H} + 6\delta_{01} + 6\delta_{12},\tag{6}$$

где l_и — изоляционное расстояние от обмоток до ярма, см;

n — число обмотанных стержней.

Вес проводникового материала обмоток трансформатора в кг

 $Q_{M} = 2n\gamma_{M}l_{M}q_{M} \cdot 10^{-3}. \tag{7}$

Приведенный к стали вес активных материалов (в кг)

$$Q_n = Q_c + \beta Q_M, \tag{8}$$

где **в** — коэффициент приведения, равный отношению удельных стоимостей обмоток и сердечника.

После замены переменных через независимые уравнение (7) примет вид

$$Q_{n} = \frac{M_{1}}{\varphi} + M_{2}v^{3}u^{3} + M_{3}v^{2}u^{2} + \frac{M_{4}k_{r}(y+\delta)}{P\delta'}, \qquad (9)$$

где

$$M_{1} = \frac{(n + 1) \cdot S_{c}}{K_{c}} a_{1}, \qquad (10)$$

$$M_2 = \frac{(n+1)}{8\nu^3} a_1, \tag{11}$$

$$M_3 = \frac{4nb + B}{4p^2} a_1, \tag{12}$$

$$a_1 = \frac{k_c \pi \gamma_c}{4} , \qquad (13)$$

$$a_2 = 2n\beta \gamma_M \pi. \tag{14}$$

Аналитическое исследование трансформаторов на минимум приведенного веса в общем виде очень сложно, поэтому в данной статье приводятся некоторые результаты численного исследования трехфазных двухобмоточных трансформаторов предельной мощности класса напряжения 750 кв.

В пунктах 6, 7, 8, 9 табл. 1 и 2 даны расчетные вначения веса стали, проводникового материала и Q_n при различных значениях радиальной ширины и высоты меди элементарного проводника.

В табл. 1 представлена зависимость $\hat{Q}_n = f(y)$ при x = const, а в табл. 2 зависимость $Q_n = f(x)$ при y = const, из которых следует, что с ростом x и y Q_n увеличивается.

При расчете этих таблиц приняты исходные данные:

Кроме того, для табл. 1 x=0,14 см; для табл. 2 y=1,8 см.

Технико-экономические исследования оптимальных размеров трансформаторов следует производить путем минимизации суммарных расчетных затрат, составляющие которых упомянуты выше.

Выражение расчетных затрат представлено в виде

$$3 = (A_1 + ДB^2) Q_c + (\beta A_2 + k_r \Delta^2 E) Q_M,$$
 (15)

где A_1 , A_2 , Д, E — постоянные [2], равные A_1 =0,2356; A_2 =0,185; E=85,7 · 10⁻⁷; Д=29,9 · 10⁻³.

На рис. 1 показана зависимость 3 = f(x, y) при x = 0,14 см для различных значений мощностей на стержень.

На рис. 2 представлены зависимости 3 = f(x, y) при y = 1,06 см для b = 7 см; y = 1,0 см для b = 8 см; y = 0,9 см для b = 9 см.

Значения мощностей и напряжения короткого замыкания взяты из табл. 1 [1] с соответствующими постоянными.

Из приведенных таблиц и графиков можно сделать следующие выводы:

- 1. При конструктивных значениях переменных х и у приведенный (к стали) вес активных материалов минимума не имеет.
- 2. Имеет место слабая зависимость расчетных затрат от величины y в пределах его конструктивных значений. Оптимальное значение осевой высоты катушки находится в пределах от 1,5 см до 3,5 см.
 - 3. Осевые размеры элементарного проводника, соответствующие

Таблица 1

L. I. I.	у	0,6	1,0	1,2	1,5	1,8	2,1	2,4	2,7	3,0	3,3	3,6	3,9
1	k _r	1,017	1,0284	1,033	1,039	1,044	1,048	1,052	2 1,055	1,058	1,060	1,062	1,064
2	Δ	614	486	449	407	378	357	338	324	312,5	302	293,5	288
3	φ	1966	2013	2005	1990	1960	1922	1895	1865	1840	1812	1790	1775
4	d	132	134,6	134	133,3	132	129,8	128,6	127	124,2	123,8	123	122
5	h	213	199,5	202	206	213,3	225	233	243	257	262,5	268,5	275
6	Qc	190500	196200	194200	193300	190800	188000	187200	184600	183400	182000	180000	180000
7	Q_{M}	20100	24500	26700	29700	32600	35100	37300	39800	41800	43800	45800	47500
8	βQ_{M}	70500	85600	83900	104200	114000	112700	130600	139100	146400	153400	160200	166200
9	Q_n	261000	281800	288100	297500	304800	310700	317800	323700	329800	335400	340200	346200
10	3 _M	78560	66870	64880	63200	62800	62900	62750	63560	64100	64700	65450	66700
11	3 _c	62400	64300	63500	63300	62500	61500	61200	60400	60000	59500	58900	58900
12	3	140960	131170	128380	126500	125300	124400	123950	123960	124100	124200	124350	125600

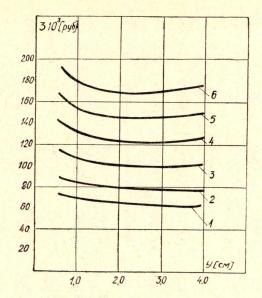


Рис. 1: 1—S= 70 мва, 2—S=100 мва, 3—S=150 мва, 4—S=200 мва, 5—S=250 мва, 6—S=300 мва.

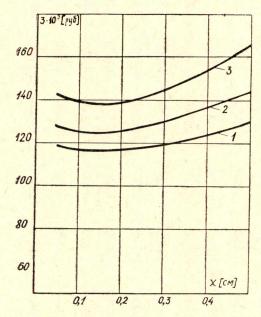


Рис. 2: 1-b=7 см, 2-b=8 см, 3-b=9 см.

минимуму расчетных затрат, с одной стороны, и максимуму мощности, с другой (при прочих равных условиях), почти не отличаются по величине (табл. 3).

Это позволяет использовать x_0 (оптимальное), определенное из (17) [1], и для нахождения оптимальных размеров трансформаторов, соответствующих минимуму затрат.

и. п.	x	0, 5	0,1	0,15	0,2	0,25	0,3	0,35
1	$\begin{array}{c} k_r \\ \Delta \\ \phi \\ d \\ h \\ Q_c \\ Q_m \\ Q_m \\ Q_n \\ 3_{\scriptstyle M} \\ 3_{\scriptstyle G} \\ 3_{\scriptstyle G} \\ 3_{\scriptstyle G} \end{array}$	1,0045	1,022	1,052	1,096	1,15	1,22	1,30
2		409	388	377	366	356,5	345	333,5
3		1896	1965	1968	1940	1905	1856	1803
4		128,5	132,2	132,6	131,2	130,3	126,6	124,6
5		233	211	210,5	217	225,5	244	261
6		186500	190800	191100	189800	189500	184400	183000
7		31100	31700	32600	33950	35700	37800	40300
8		109000	111000	114100	119000	124800	132000	141100
9		295500	301800	305200	308800	314300	316400	324100
10		64750	62080	62730	64700	67700	71350	76100
11		61000	62500	62600	62100	62000	60450	59950
12		125750	124500	125330	126800	129700	131790	136050

Таблица 3.

Sc (Mea)	х (см) (из расчета затрат рис. 2)	х <i>(см)</i> из табл. 1 (1)
161,7	0,15	0,152
182	0,14	0,14
203	0,13	0,13

ЛИТЕРАТУРА

1. И. Д. Кутявин, Л. И. Дель. «О предельной мощности трансформатора». Изв. ТПИ, т. 172.
2. И. Д. Кутявин. «К определению оптимальных размеров трехфазных двухобмоточных трансформаторов». Изв. ТПИ, т. 130.
3. И. Д. Кутявин, Л. И. Дель. «Определение предельной мощности трансформаторов с учетом напряжения короткого замыкания».