ИЗВЕСТИЯ

томского ордена октябрьской революции и ордена трудового красного знамени политехнического института имени с. М. Кирова

Том 195

1974

ТЕМПЕРАТУРНЫЕ ИЗМЕНЕНИЯ УПРУГИХ СВОЙСТВ МОНОКРИСТАЛЛОВ ХЛОРИСТОГО НАТРИЯ

А. В. ШАРКО, А. А. БОТАКИ

(Рекомендована к печати кафедрой общей физики ТПИ)

Исследование упругих свойств кристаллов имеет большое значение для развития микроскопической теории свойств твердых тел. Несмотря на большую работу, проделанную как теоретиками [1, 2], так и экспериментаторами, закономерности изменения механических свойств от химического состава ряда галогенидов щелочных металлов еще мало изучены. Имеющиеся в литературе данные экспериментальных исследований температурных изменений упругих свойств монокристаллов галогенидов щелочных металлов малопригодны для выявления таких зависимостей, так как выполнены разными авторами и в различных условиях (исключением являются только работы А. В. Степанова и С. П. Никанорова с сотрудниками [3—6], которые провели измерения температурных изменений упругих свойств большинства монокристаллов галогенидов щелочных металлов для температур, выше комнатной).

Авторы настоящей работы поставили своей целью систематическое изучение температурных изменений упругих свойств монокристаллов галогенидов щелочных металлов для температур ниже комнатной. Данная работа посвящена исследованию упругих свойств монокристаллов хлористого натрия импульсным ультразвуковым методом. Измерение скоростей распространения ультразвукового дефектоскопа ДУК-6В. Пользуясь методикой относительных измерений, были определены $C_{1^{\infty}}$ —скорость распространения продольных волн в неограниченной среде, C_t — скорость распространения продольных волн в тонком стержне и C_{\perp} — скорость распространения поперечных волн. Среда считается неограниченной, если ее поперечные размеры много больше длины волны ультразвуковых колебаний, и образец считается тонким, если его поперечные размеры меньше длины упругих волн в образце.

Сущность методики относительных измерений заключается в следующем. По шкале глубиномерного устройства дефектоскопа, настроенного по эталонному образцу с известной скоростью распространения ультразвука C_0 , определялась кажущаяся длина l' испытуемого образца; истинная его длина l_0 определялась путем непосредственных измерений. Обозначив через C и C_0 соответственно скорости распространения упругих волн в исследуемом и эталонном образцах через n — номер многократного отражения эхо-импульса, искомую величину скорости Cможно определить из соотношения

$$l' = n \frac{C_0}{C} l_0. \tag{1}$$

Образцы для измерения упругих постоянных изготавливались из естественных монокристаллов хлористого натрия и искусственно выращенных по методу Киропулоса в кристаллизационной лаборатории ТПИ из химически чистого исходного материала. Образцы имели форму прямоугольных брусков с гранями, совпадающими с плоскостями спайности монокристалла. При снятии температурной зависимости скорости распространения ультразвука образец приклеивался к искательной головке дефектоскопа смесью, состоящей из 88% эпоксидной смолы ЭД-5 и 12% полиэтилен полиамина и помещался в криостат. Особое внимание при подготовке образцов к измерениями уделялось качеству и параллельности рабочих граней образца, а также совпадению их с плоскостями {100}. Рабочие грани имели тонкошлифованную поверхность с последующей дополнительной полировкой. В целях устранения внутренних напряжений и последствий механической обработки перед окончательной доводкой поверхности образцов последние подвергались отжигу при температуре 600° в течение 24 часов с последующим медленным охлаждением. Образцы для измерений С 100 и С имели разме ры 80×40×40 мм и для измерений С, 6×6×25 мм. Величина плотности монокристаллов хлористого натрия для разных температур [7] определя. лась по формуле

$$\rho(t) = 2,1680 \left[1 - 1,12 \cdot 10^{-4} t - 5 \cdot 10^{-8} t^2\right],$$

где *t* — температура в °С.

Изменение истинной длины образца l(t) в зависимости от температуры рассчитывалось по формуле [8]

$$l(t) = l_0 \left[1 + \int_t^{t_0} \alpha(t) dt \right],$$

где $\alpha(t)$ — коэффициент линейного расширения, который согласно Хенглею [9] может быть определен по формуле

$$\alpha(t) = \frac{\rho(t) - \rho_0}{\rho(t) \cdot t}, \qquad (3)$$

где $\rho(t)$ и ρ_0 плотности соответственно при температуре t и 0°С. Модуль Юнга в направлении < 100 > и константа упругости C_{11} определялись по измеренным значениям $C_{1\infty}$ и C_1 из известных формул

$$C_{l_{\infty}} = \sqrt{\frac{\overline{C_{11}}}{\rho}}; \quad C_l = \sqrt{\frac{\overline{E_{100}}}{\rho}}.$$
 (4)

Для нахождения третьей независимой константы—модуля сдвига G в образец посылались импульсы поперечных волн, при этом использовались призматические искательные головки на частоту 2,5 *мггц* с углом ввода ультразвуковых колебаний 50°, что позволяло осуществлять трансформацию продольных волн в сдвиговые. В общем случае при падении ультразвуковой волны в плоскопараллельную пластинку под некоторым углом к нормали в образце возникают как продольные, так и поперечные волны. При выбранном угле падения ультразвука происходит полное внутреннее отражение продольных волн, и в исследуемой среде распространяются только поперечные волны, направленные под некоторым углом по отношению к кристаллографическим осям. Учет этого угла давал возможность определить фактор ориентации $F(\gamma)$ [10]

$$F(\gamma) = \gamma_{1}^{2} \gamma_{2}^{2} + \gamma_{1}^{2} \gamma_{3}^{2} + \gamma_{2}^{2} \gamma_{3}^{2}, \qquad (5)$$

где ү — направляющие косинусы углов, образуемых направлением распространения поперечных волн с кристаллографическими осями.

Пользуясь формулой $C_{\perp} = \sqrt{\frac{G}{\rho}}$ по измеренным значениям C_{\perp} , на-

ходим G в направлении распространения сдвиговых волн. Расчет постоянных упругости C_{ik} и коэффициентов упругости S_{ik} производился по хорошо известным формулам [11]:

$$S_{11} = \frac{1}{E_{100}};$$

$$C_{11} = \frac{S_{11} + S_{12}}{(S_{11} - S_{12})(S_{11} + 2S_{12})};$$

$$\frac{1}{G} = S_{44} + 4 \left[(S_{11} - S_{12}) - \frac{1}{2} S_{44} \right] F(\gamma);$$

$$C_{44} = \frac{1}{S_{44}};$$

$$C_{11} = \frac{-S_{12}}{(S_{11} - S_{12})(S_{11} + 2S_{12})}.$$

 $C_{11} = \frac{1}{(S_{11} - S_{12})(S_{11} + 2S_{12})}$

Коэффициент Пуассона был найден из выражения [12]

T, ⁰K	р, г/см ³	Скорость распространения УЗК, м/сек				
		C ₁₀₀	C	<i>C</i> ₁		
300	2,1613	4697	4410	2426		
290	2,1639	4710	4427	2426		
280	2,1663	4724	4447	2427		
270	2,1687	4737	4471	2427		
260	2,1711	4759	4492	2427		
250	2,1732	4771	4512	2427		
240	2,1759	4790	4551	2427		
230	2,1782	4803	4556	2427		
220	2,1806	4813	4574	2427		
210	2,1829	4829	4594	2427		
200	2,1851	4848	4615	2427		
190	2,1874	4366	4635	2428		
180	2,1896	4873	4662	2428		
170	2,1919	4882	4673	2428		
160	2,1943	4895	4693	2428		
150	2,1962	49 09	4714	2428		
140	2,1984	4921	4731	2429		
130	2,2005	4935	4751	2429		
120	2,2025	4951	4772	2429		
		10	1.9			

Таблица 1

$$\sigma = \frac{1 - 2\left(\frac{C_{\perp}}{C_{l_{\infty}}}\right)^2}{2 - 2\left(\frac{C_{\perp}}{C_{l_{\infty}}}\right)^2}.$$

(7)

(6)

125

Данные измерений и вычисленные по ним константы упругости и факторы анизотропии $(S_{11}-S_{12}) - \frac{1}{2} S_{44}$ и $C_{44} / \frac{C_{11} - C_{12}}{2}$ в функции от тем-

пературы приведены в табл. 1, 2, 3. Кроме того, в таблицах приведены температурные изменения сжимаемости $\varkappa =$ $= 3 (S_{11} + 2S_{12})$, объемной упругости $\frac{C_{11} + 2C_{12}}{3}$ и меры сопротивления деформации, вызываемой скалывающим напряжением, приложенным в плоскости {110} в направлении $<100 > \frac{C_{11} - C_{12}}{2}$; гра-

фики этих зависимостей приведены на рис. 1. Экстраполяция экспериментальных значений температурных зависимостей упругих постоянных к 0° К дает следующие значения:

$$E_{100} = 5,300 \cdot 10^{11} \frac{\partial \mu}{cm^2}; \quad G_{100} = C_{44} = 1,310 \cdot 10^{11} \frac{\partial \mu}{cm^2}$$
$$C_{11} = 5,625 \cdot 10^{11} \frac{\partial \mu}{cm^2}; \quad C_{12} = 0,973 \cdot 10^{11} \frac{\partial \mu}{cm^2};$$
$$S_{11} = 0,1874 \cdot 10^{-11} \frac{cm^2}{\partial \mu}; \quad S_{12} = 0,0290 \cdot 10^{-11} \frac{cm^2}{\partial \mu},$$
$$S_{44} = 0,7368 \cdot 10^{-11} \frac{cm^2}{\partial \mu},$$

что находится в хорошем соответствии со значениями для 0°К, полученными Овертоном и Свимом [8].

Определение констант упругости, а также снятие их низкотемпературных зависимостей производилось параллельно на естественном и ис-

Таблица 2

	Постоянные упругости ×10-11 дн/см ² Коэффициенты упругости ×10 ¹¹ с.					
Т, °К	C ₁₁	C ₁₂	C ₄₄	S ₁₁	-S ₁₂	S44
300	4.769	1,314	1,273	0,2380	0,0514	0,7855
290	4,801	1,306	1,274	0,2357	0,0504	0,7849
280	4,834	1,298	1,276	0,2334	0,0491	0,7837
270	4,868	1,291	1,277	0,2306	0,0484	0,7831
260	4,908	1,282	1,279	0,2284	0,0473	0,7819
250	4,948	1,271	1,280	0,2263	0,0464	0,7812
240	4,994	1,260	1,282	0,2238	0,0452	0,7800
230	5,025	1,252	1,283	0,2212	0,0443	0,7794
220	5,052	1,244	1,285	0,2192	0,0433	0,7782

126

Sections.	Постоянные упругости ×10-11дн/см2			Коэффициенты упругости ×10 ¹¹ см ² /д ^н			
T,°K	<i>C</i> ₁₁	C_{12}	<i>C</i> ⁴⁴	S ₁₁	-S ₁₂	S ₄₄	
210	,091	1,233	1,286	0,2169	0,0423	0,77 76	
200	5,134	1,218	1,287	0,2148	0,0414	0,7770	
190	5,178	1,202	1,289	0,2127	0,0402	0,7756	
180	5,20)	1,194	1,290	0,2105	0,0393	0,7752	
170	5,224	1,185	1,292	0,2088	0,0386	0,7740	
160	5,258	1,169	1,294	0,2068	0,0376	0,7726	
150	5,294	1,155	1,295	0,2049	0,0367	0,7722	
140	5,323	1,145	1,297	0,2032	0,0360	0,7710	
130	5,359	1,128	1,298	0,2012	0,0350	0,7702	
120	5,399	1,111	1,299	0,1992	0,0340	0,7689	

кусственно выращенном монокристаллах NaCl. Результаты измерений показали сравнительно хорошее совпадение на обоих образцах, с некоторым занижением модулей упругости в монокристалле каменной соли, что, по-видимому, объясняется более высокой плотностью дислокаций в последней. Повторные измерения дали лучшую стабильность результатов измерений на искусственно выращенном кристалле, чем на каменной соли, поэтому в таблице помещены результаты измерений на искусственно выращенном монокристалле.

Таблица З

T°,K	$\frac{C_{11} - C_{12}}{2} \\ \times 10^{-11} \\ \frac{\partial \mu / c M^2}{2}$	$\frac{C_{44}}{C_{12}}$	$\frac{C_{11}+2C_{12}}{3} \times \frac{10^{-11}}{\partial \mu/c.M^2}$	$\frac{2C_{44}}{C_{11}-C_{12}}$ $\frac{\partial H/cM^2}{\partial H}$	$ \begin{vmatrix} - [(S_{11} - S_{12}) - \\ - \frac{1}{2} S_{44}] \times !0^{11} \\ c. \pi^2 / \partial \mu \end{vmatrix} $	$\begin{array}{c} E_{100} \\ \times 10^{-11} \\ \partial \mu / c m^2 \end{array}$	$\begin{array}{c} \varkappa \times 10^{11} \\ c \mathcal{M}^2 / \partial \mathcal{H} \end{array}$	σ
300	1,728	0,969	2,466	0,737	0,1033	4,201	0,4056	0,3181
290	1,747	0,976	2,471	0,729	0,1063	4,242	0,4047	0,3194
280	1,768	0,983	2,476	0,722	0,1090	4,285	0,4038	0,3207
270	1,783	0,989	2,484	0,714	9,1126	4,335	0,4026	0,3221
260	1,813	0,997	2,491	0,706	0,1152	4,380	0,4014	0,3242
250	1,838	1,007	2,497	0,696	0,1179 .	4,422	0,4005	0,3254
240	1,876	1,018	2,501	0,687	0,1210	4,467	0,3993	0,3273
230	1,886	1,024	2,510	0,680	0,1242	4,520	0,3984	0,3286
220	1,904	1,033	2 513	0,675	0,1266	4,561	0,3975	0,3295
210	1,929	1,043	2,519	0,667	0,1296	4,609	0,3969	0,3311
200	1,958	1,057	2,523	0,657	0,1323	4,655	0,3953	0,3327
190	1,998	1,073	2,527	0,648	0,1350	4,700	0,3957	0,3336
180	2,003	1,081	2,529	0,644	0,1378	4,750	0,3954	0,3348
170	2,020	1,091	2,531	0,640	0,1396	4,788	0,3951	0,3357
160	2,044	1,107	2,533	0,633	0,1420	4,835	0,3948	0,3369
150	2,069	1,121	2,535	0,626	0,1445	4,880	0,3945	0,3381
140	2,088	1,131	2,539	0,621	0,1463	4,922	0,3939	0,3389
130	2,115	1,150	2,529	0,614	0,1499	4,970	0,3939	0,3401
120	2,114	1,111	2,541	0,606	0,1517	5,020	0,2936	0,3409
				1. 1.		1- 1921		

ЛИТЕРАТУРА

Huntington Solid State Phys., 7, 213, 1958.
 К. А. Александров, Т. В. Рыжева. Кристаллография, 6, 289, 1961.
 А. В. Степанови И. М. Эйдус. ЖЭТФ, 29, 669, 1955.
 С. П. Никаноров, А. В. Степанов. ФТТ, 6, 1987, 1964.
 С. П. Никаноров, А. В. Степанов. ЖЭТФ, 37, 1814, 1959.
 Ю. М. Чернов, А. В. Степанов. ФТТ, 3, 2872, 1961.
 International Cvitical Tables of Numevical Data (Mc—Craw—Hill Company V).

7. International Cvitical Tables of Numevical Data (Mc—Craw—Hill Company N. V.), vol. III, p. 43, 1928.
8. Overton Ir and Swim R. T. Phys. Rev., 84, 758, 1951.
9. Fr. A. Henglein, Zeit Physik Chemie, 115, 91, 1925.
10. В. Бюрен, Дефекты в кристаллах. М., ИЛ, 27, 1969.
11. К. Зинер. Упругость и неупругость металлов. Сб. под ред. С. В. Вонсовского. М., ИЛ, 22, 1954.
12. Нараспримения исполатия (справонных нов ред. Р. Мак-Мастера). М.

12. Неразрушающие испытания (справочник под ред. Р. Мак-Мастера). М., ИЛ, 2, 269, 1965.