ПЕТРОГЕНЕЗИС СПИЛИТО-ДИАБАЗОВОЙ ФОРМАЦИИ ЮГО-ЗАПАДНОЙ ЧАСТИ КУЗНЕЦКОГО АЛАТАУ

Л. В. ПЕШЕХОНОВ

(Представлена проф. А. Г. Сивовым)

В юго-западной части Кузнецкого Алатау значительные площади водораздельного пространства рек Мрассу, Кондома и Пызас заняты вулканогенными образованиями основного состава. Анализ фактического материала по эффузивным породам района позволил автору весь комплекс вулканогенных пород по составу и условиям формирования отнести к спилито-диабазовой формации. Обнаруженные остатки нижнекембрийских археоциат и водорослей в карбонатных элементах формации свидетельствуют о формировании, по крайней мере, верхних ее членов в начале раннего кембрия [6].

В структурном отношении отложения формации связаны с зонами глубинных разломов, заложившихся в эвгеосинклинальном типе струк-

турно-фациальной зоны.

Спилито-диабазовая формация имеет пестрый состав — наряду с вулканогенными в ней развиты и осадочные отложения. Из осадочных пород в ней широко развиты кремнистые, карбонатные, реже терригенные. Кремнистые отложения обычно сменяют лавы по простиранию. Карбонатные и терригенные отложения чаще всего встречаются в верхних частях формации и во времени связаны с этапами относительного затухания вулканизма. Собственно вулканогенные образования преимущественно проявились в виде покровов основной лавы, продукты извержения которой сохранились в виде ряда петрографических разновидностей диагенетизированных пород. Среди них типичными являются альбитизированные базальтовые и диабазовые порфириты. Меньшим распространением пользуются спилиты, альбитизированные гиалобазальтовые порфириты и туфы. Наличие яшм, кремнистых сланцев и спилитов с подушечным типом текстуры свидетельствует о подводном характере вулканизма.

В настоящее время в результате петрохимического анализа различных ассоциаций магматических пород можно считать установленным существование трех классов магм основного состава, которые, по мнению Ю. М. Шейнманна [9], нельзя по их химизму свести одна к другой. Отражением самостоятельных классов основного типа магмы Ю. М. Шейнманн считает андезит-базальтовый комплекс пород островных дуг, оливин-базальтовую ассоциацию пород океанических островов и толеитовые платобазальты. Для определения исходного класса магмы для пород спилито-диабазовой формации нашего района мы использовали диаграммы Ю. М. Шейнманна [9], построение которых основано на

использовании коэффициента щелочности (рис. 1) и «фемического показателя» (рис. 2). На приведенных диаграммах, видно, что большинство анализов для всех типов пород формации укладывается в поле оливин-базальтового класса основной магмы. На этом основании мы склонны рассматривать породы спилито-диабазовой формации нашего района дифференциатами оливиновой базальтовой магмы. Безоливино-

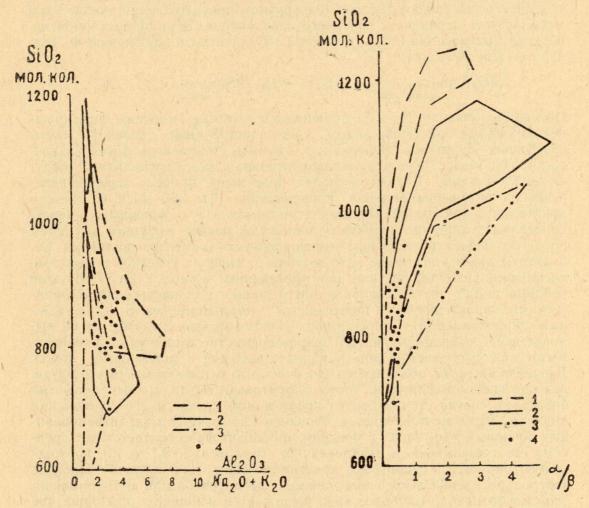


Рис. 1. Диаграмма-кремнезем-алюминиево-щелочной показатель для лавы Тихого океана (Ю. М. Шейнманн); 1—поле андезит-базальтовых комплексов, 2—поле оливин-базальтовых комплексов, 3— поле ультраосновных комплексов, 4— кембро-протерозойские эффузивы спилито-диабазовой формации юго-западной части Кузнецкого Алатау. Рис. 2. Диаграмма-кремнезем-«фемический показатель» для лавы Тихого океана (Ю. М. Шейнманн). Обозначения те же, что и на рис. 1. α— сумма окислов натрия и калия; β— сумма окислов, идущих на построение темноцветных минералов.

вый состав базальтовых пород описываемой формации объясняется тем, что фракционная кристаллизация родоначальной магмы (оливиновой) осуществлялась при достаточно высоком уровне давления кислорода, обеспечиваемого введением в систему воды [5], что допустимо в условиях подводного вулканизма.

Петрографический состав, а также химический состав эффузивов (табл. 1) показывает, что в целом для вулканогенных пород формации характерна натровая специализация в составе щелочей. Однако содержание натрия в рассматриваемых породах, как это отмечено А. Ф. Белоусовым и др. [1], и для базальтовых эффузивов верхнего протерозоя

и кембрия Алтая и Салаира, лишь в исключительных случаях достигает среднего для высоконатровых спилитов. Больше половины анализированных пород содержит Na_2O меньше 3,5%, в то время как среднее содержание Na_2O в спилитах, по данным Н. Сандьюса [7], достигает 4,93%. Вместе с тем в породах описываемой формации с любым содержанием Na_2O плагиоклаз обычно представлен альбитом, в котором иногда сохраняются реликты более основного плагиоклаза. Последнее обстоятельство свидетельствует о вторичном происхождении альбита при метасоматозе первичного основного плагиоклаза. Этот процесс происходит при привносе Na и Si и выносе Ca и Al согласно уравнению Ca. Тернера и Ca. Ферхугена [7]

NaCaAl₃Si₅O₁₆ + Na⁺ + Si⁴⁺
$$\rightarrow$$
 2NaAlSi₃O₈ + Ca⁺⁺ + Al³⁺.

По нашему мнению, Na и Si привносятся не извне (морская вода, позднее флюидные растворы и др.), а из неустойчивой основной массы застывших эффузивов. Обычно это основная стекловатая масса базальтов или диабазов, или межшаровая основная масса в спилитах с подушечной текстурой. В таких породах происходит процесс перераспределения и дифференциальной концентрации Na, Si, Al и Ca между кристаллической фазой эффузивов (плагиоклаз) и конечными нераскристаллизованными продуктами застывшей магмы. Хорошим примером процесса перераспределения вышеназванных элементов являются результаты анализов химического состава различных участков концентрически-зональных подушечных тел, приведенные в табл. 2 (4, 7). Из этой таблицы видно, что центральные части шаров, в сравнении с периферическими, характеризуются повышенным содержанием Na, Si и пониженным содержанием А1. Относительно кальция можно сказать, что он выносится из центральных частей шаров совместно с кальцием периферических зон' и оседает в виде карбоната кальция в миндалинах пород. Вышеизложенным объясняется тот факт, что основная масса в эффузивах описываемой формации имеет хлоритовый состав, а в неизмененных базальтах состав стекла богаче кремнеземом среднего его содержания в породе. Этим же объясняется, что содержание Na₂O в альбитизированных основных эффузивах в среднем приблизительно соответствует среднему его содержанию в неизмененных базальтах — 3,11% [2], который концентрируется в основном в кристаллическом плагиоклазе. Процесс перераспределения вышеперечисленных компонентов при метасоматической альбитизации наиболее ярко выражается в породах, имеющих две формы состояния вещества застывшей магмы — кристаллическую и стекловатую. Содержание Na₂O в альбитизированных породах определяется при этом содержанием кристаллического плагиоклаза в породе. Чем меньше кристаллов плагиоклаза в породе, тем меньше содержание Na₂O в валовом химическом анализе породы. Вместе с тем ведущее значение в этом процессе имеет количество первоначального стекла. В хорошо раскристаллизованных породах альбитизация кристаллов основного плагиоклаза происходит не в полном объеме, так как незначительное количество стекла не обеспечивает нужного запаса Na и Si для полного замещения основного плагиоклаза альбитом. Этим объясняется наличие в альбите реликтов основного плагиоклаза и целых участков первичных пород базальтового состава в общей массе вулканогенных пород.

Важно отметить, что альбитизация начинается после застывания магмы, но до полного остывания ее, возможна, отчасти, в твердом виде и начинается с распада вулканического стекла. Распаду вулканического стекла, по мнению М. А. Усова [8], в значительной степени помогают

Название породы	Химический состав пород спилито-диабазовой формации Талон-Камзасского района (в процентах)										К-во
	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	анализов
Спилит	53,10	1,57	14,42	3,00	9,09	0,13	4,58	6,87	4,05	0,23	3
Альбитизированные гиалобазальтовые порфириты	50,69	1,49	14,25	2,53	8,96	0,14	5,24	10,15	2,36	0,22	3
Альбитизированные базальтовые порфириты	51,32	1,42	14,82	3,10	9,82	0,15	4,21	6,99	3,80	0,79	4
Альбитизированные диабазы и диабазовые порфириты	51,21	1,18	15,61	2,37	9,60	0,12	4,66	8,41	3,39	0,47	6
Средний состав опи- сываемых эффу- зивов	51,50	1,36	14,94	2,70	9,44	0,13	4,64	8,09	3,41	0,46	16
Состав всех базальтов по Дэли (1933)	49,06	1,36	15,70	5,38	6,37	0,31	6,17	8,95	3,11	1,52	

жидкие и газообразные вещества, которые растворены и акклюдированы в застывшей магме. Однако распад вулканического стекла осуществляется и в эффузивах континентального извержения, но никогда не приводит к альбитизации в региональных масштабах. Поэтому естественно считать, что интенсивность альбитизации зависит от влияния региональных физико-химических факторов (температуры, давления, избытка H_2O и CO_2), которые наиболее благоприятно сочетаются в геосинклинальных условиях вулканизма — условиях большей подвижности. Тектонические движения, осуществляющиеся на протяжении длительной истории раз-

Таблица 2

							the same of the		And the second
Компонен-	1	2	3	4	5	6	7	8	9
SiO ₂	48,38	50,40	30,24	29,46	47,36	44,01	36,26	51,78	46,06
TiO ₂	1,27	1,55	0,58	3,01	1,24	1,38	1,49	1,12	2,02
Al_2O_3	12,73	14,16	16,83	16,95	16,00	15,54	17,12	14,74	15,22
Fe_2O_3	3,17	1,63	3,95	5,23	1,45	2,72	4,40	2,21	3,95
FeO	6,52	8,54	18,72	15,53	6,37	6,34	6,44	10,39	8,00
MnO	0,17	0,16	0,28	0,10	0,15	0,11	0,09	0,11	0,17
MgO	7,96	8,58	16,73	16,08	5,75	6,13	7,57	4,49	8,20
CaO	9,48	5,90	1,92	2,97	7,67	10,48	14,28	6,78	11,45
Na ₂ O	3,92	4,28	0,27	0,84	5,42	3,74	0,18	3,42	2,35
K_2O	0,08	0,16	0,02	0,51	0,57	0,55	1,81	0,67	0,25
P_2O_5	0,15		0,11		0,17	0,17	0,17	0,22	0,20
		100							

Химические составы зон шаровых спилитов. Анализы: 1, 2, 3, 4 взяты из работы Ф. Тернера и Дж. Ферхугена [7]. Анализы: 5, 6, 7 взяты из работы Г. Д. Николса [4]. 1—Центр шара, Ньюборо, Уэльс. 2—Кайма (вариолитовая) того же шара, что и шар анализа 1. 3—Основная масса, окружающая тот же шар, что и шар анализов 1, 2. 4—Основная масса шаровых спилитов, Альпы, Шампач, Швейцария. 5— Центральная часть зонального спилитового шара из билтской вулканической серии. 6—Зеленый материал периферической части того же шара, что и шар анализа 5. 7—Темно-серый материал с краевой части того же шара, что и шар анализа 5, 6. 8—Центральная часть внешне однородного спилитового подушечного тела спилитово-диабазовой формации нижнего кембрия юго-западной части Кузнецкого Алатау. 9—Периферическая часть того же подушечного тела, что и подушечное тело анализа 8.

вития геосинклиналей, обеспечивают высокую и длительную подвижность жидким растворам, которые своим действием при благоприятной температуре и давлении не только приводят к полной альбитизации плагиоклаза, но и разложению пироксена. Оценивая конечные продукты этого процесса замещения, необходимо согласиться с Д. С. Коржинским [3], который альбитизацию базальтов рассматривал как обычный метаморфический процесс, возникающий на глубинах не менее одного километра.

ЛИТЕРАТУРА

1. А. Ф. Белоусов, В. В. Велинский, Ю. Н. Кочкин. Плагиоклазы в базальтовых эффузивах верхнего протерозоя и кембрия на Алтае и Салаире. Геология и геофизика, № 3, 1965.
2. А. Н. Заварицкий. Изверженные горные породы. Изд. АН СССР, М., 1961.

2. А. Н. Заварицкий. Изверженные горные породы. Изд. АН СССР, М., 1961. 3. Д. С. Коржинский. Проблема спилитов и гипотеза трансвапоризации в свете новых океанологических и вулканических данных. Изв. АН СССР, сер. геол., № 9, 1962.

№ 9, 1962. 4. Г. Д. Николс. Автометасоматоз в нижних спилитах билтской вулканической

серии. Проблемы палеовулканизма. ИИЛ, М., 1963.

5. Е. Ф. Осбор н. Экспериментальное исследование давления кислорода, содер-

жание воды и порядка кристаллизации базальтов и андезитов. Химия земной коры. Том ІІ. Изд. «Наука», М., 1964.
6. Л. В. Пешехонов. К стратиграфии докембрия юго-западной части Кузнецкого Алатау. Изв. ТПИ. Изд. ТГУ, том 167, Томск, 1967.
7. Ф. Тернер, Дж. Ферхуген. Петрология изверженных и метаморфических пород. ИИЛ, М., 1961.
8. М. А. Усов. Фазы эффузивов. Изв. Томского технологического института, 1924, 46, 2-е изд., Томск, 1929.
9. Ю. М. Шейнманн. Возможные связи магм со строением внешних оболочек Земли. Химия земной коры. Том ІІ. Изд. «Наука», М., 1964.