ИССЛЕДОВАНИЯ ПО ОПРЕДЕЛЕНИЮ МИКРОПРИМЕСЕЙ В СВИНЦЕ ВЫСОКОЙ ЧИСТОТЫ

В. Ф. ЯНКАУСКАС, В. М. ПИЧУГИНА, А. А. КАПЛИН, В. И. КУЛЕШОВ

(Представлена научно-методическим семинаром химико-технологического факультета)

Для одновременного определения меди и висмута (наряду с другими примесями) в свинце высокой чистоты используется чаще всего химико-спектральная методика [1]. Однако последняя продолжительна

и трудоемка.

Целью наших исследований явилась разработка методики одновременного определения меди и висмута в свинце высокой чистоты без отделения основы методом амальгамной полярографии с накоплением (АПН) [2]. Сравнение потенциалов полуволн меди, висмута и свинца на различных фонах показывает [3], что между потенциалами полуволн этих элементов имеется значительная разница (до — 0,3—0,4 в). Это позволяет проводить накопление меди и висмута при потенциалах более положительных, чем потенциал начала восстановления свинца. Оптимальным вариантом является определение меди и висмута из раствора азотнокислого свинца после растворения навески свинца в азотной кислоте. Однако на фоне азотнокислого свинца анодные зубцы меди и висмута практически не разделяются. Полученные нами опытные данные по анодным зубцам меди и висмута на разных фонах (табл. 1) показали, что на изученных фонах не удается найти условия,

Таблица 1 Потенциал анодных пиков Рb, Сu, Вi на некоторых фонах

№ п.п.		Потенциалы пиков, в (отн. н. к. э.)		
	• Фон	Pb	Cu	Bi
1	0,5 M Pb (NO ₃) ₂	_0,40	0,0	0,0
2	0,1 HNO ₃	-0,40	0,0	0,0
3	0,2 M HCI	-0,45	-0,2	_0,05
4	$0,25 \text{ M CH}_3\text{COONH}_4 + 0,1 \text{ M H}_2\text{C}_4\text{H}_4\text{O}_6$	_0,40	0,0	<u> </u>
5	1 M H ₂ SO ₄	0,40	-0,2	0,0

которые были бы одновременно оптимальными как для стадий обработки пробы, так и для накопления, анодного окисления и регистрации пиков. Так на фоне 0,2M HCl висмут окисляется обратимо (ширина

зубца минимальна), однако медь окисляется необратимо; свинец выпадает в осадок. На фоне $0.25~M~CH_3COONH_4+0.1~M~H_2C_4H_4O_6$ медь окисляется обратимо (ширина зубца минимальная), однако анодный пик висмута маскируется током анодного окисления ртути; присутствие

тартрат иона вызывает выпадение осадка виннокислого свинца.

Затруднения при решении задачи одновременного определения меди и висмута без отделения основы свинца устранены нами путем использования приема переноса электродов (смены электролита) [4]. Сущность приема переноса состоит в том, что стадия накопления проводится в одном фоновом растворе, а анодное растворение металлов из амальгамы — в другом. Конструкция и размеры электролизера описаны ранее [4]. В качестве катода использовался ртутный пленочный электрод с поверхностью 0,16 см² [5]. Кислород из раствора удалялся

барботажем очищенного азота [6].

В качестве фона для накопления меди и висмута нами использован раствор навески свинца в азотной кислоте. В качестве фона для анодного растворения висмута применялся $0.2\,\mathrm{M}$ раствор соляной кислоты и анодного растворения меди $0.25\,\mathrm{M}$ СН $_3$ СООNН $_4$ + $_0.1\,\mathrm{M}$ Н $_2$ С $_4$ Н $_4$ О $_6$. Прием переноса электродов из одного электролита в другой позволяет в данном случае использовать достоинства трех фонов. Растворимость азотнокислого свинца в воде (разбавленной азотной кислоте) достаточно велика и составляет $0.5\,\mathrm{e}/\mathrm{m}$ л. Потенциал анодного зубца свинца на этом фоне равен — $0.40\,\mathrm{e}$ (отн. нас. к. э.). Поэтому при потенциале предварительного электролиза, равном — $0.35\,\mathrm{e}$ (отн. нас. к. э.), сравнительно небольшое количество восстанавливающегося на электроде свинца не затрудняет регистрацию анодных зубцов меди и висмута при анодном растворении амальгамы.

При использовании приема переноса следует особое внимание уделять промывному раствору для электродов. Катионы свинца образуют с винной и соляной (>0,1 М) кислотами не растворимые в этих фонах пленки на поверхности ртути, которые пассивируют ртутный электрод. При этом при повторных переносах ртутного электрода высота анодного зубца меди и висмута уменьшается почти до нуля. Поэтому в качестве промывного раствора для электродов при определении меди выбран 0,1 М ацетат аммония и при определении висмута —

0,05 М раствор соляной кислоты.

При переносе полнота определения висмута (%) составляет: 98; 102; 94; 85 и меди 96; 103; 95; 105; 100. Таким образом, потери меди и висмута при переносе не превышают 10—15%, что является вполне удовлетворительным, учитывая требуемую точность анализа. На основании проведенных исследований предложена следующая методика определения меди и висмута в свинце без отделения основы.

Описание определения

В кварцевый стаканчик емкостью 6-7 мл помещают 0,3 г тонкоизмельченного свинца и растворяют в 3 мл 6 М HNO $_3$ при $150-160^\circ$ на воздушной бане. Раствор упаривают досуха при этой же температуре и нитрат свинца при слабом нагревании растворяют в 3 мл 0,1 М HNO $_3$ в этом же стаканчике. Стаканчик охлаждают и помещают в электролизер. После десятиминутного удаления из раствора кислорода воздуха путем пропускания азота ведут накопление примесей на электроде при потенциале — 0,35 в (отн. нас. к. э.). По окончании накопления крышку с электродами поднимают вверх так, что электроды располагаются выше верхнего уровня стаканчиков, но внутри электролизера. Азот при этом не выключают. Между рядом расположенным

катодом и агар-агаровым ключом остается пленка раствора, так что цепь не размыкается. После поворота крышки электроды опускают на $15-20~ce\kappa$ в $0.1~M~CH_3COONH_4$ для отмывки от $Pb(NO_3)_2$; вновь поднимают крышку с электродами, поворачивают ее и опускают электроды в фон для меди. Аналогично регистрируют после накопления анодные зубцы висмута. В этом случае фоном для регистрации анодного зубца висмута является 0.2~M~ раствор соляной кислоты. Содержание меди и висмута оценивают методом добавки стандартных растворов.

Результаты статистической обработки одной из партий свинца высокой чистоты на медь и висмут приведены в табл. 2. Из таблицы видно, что при содержании меди и висмута в исследуемых пробах свин-

Таблица 2

Результаты анализа свинца на содержание примесей меди и висмута. Фон для анодного растворения меди 0, 25 м $CH_3COONH_4+0,1$ м $H_2C_4H_4O_6$ и для анодного растворения висмута 0,2 м HCl A=0,3 г; $L_{\ \ \ni \pi}=-0,35$ в (отн. нас. к. э.); V=3 мл; $\tau=6$ мин; $i^*=8\cdot 10^{-9}$ а/мм; W=200 мв/мин

	n	$\frac{1}{x} \cdot 10^5\%$	$S_{\overline{x}} \cdot 10^5 \%$	$\alpha = 0.95$		
Примесь				t _{0,95}	±ε·10 ⁵	±ε1, %
Медь	16	1,3	0,12	2,1	0,24	10,0
Висмут	16	2,2	0,21	2,1	0,46	20,0

Примечание. \overline{x} — среднее арифметическое (% примеси в образце); $S_{\overline{x}}$ — средняя квадратичная ошибка отдельного измерения; $t_{0,95}$ — коэффициент Стьюдента; E — абсолютная ошибка; E_1 — относительная ошибка; n — число опытов

ца около $10^{-5}\%$ погрешность определения меди в среднем из 16 определений составляет 10% и погрешность определения висмута в сред-

нем из 16 определений составляет 20%.

Чувствительность предлагаемой методики определения (минимально определяемое содержание меди и висмута в свинце) при глубине пика 5-10 мм, продолжительности электролиза 30 мин, чувствительности прибора $3-4\cdot 10^{-9}$ а/мм, объеме раствора 3 мл, навеске 0,3 г и перемешивании раствора барботажем азота составяет $1\cdot 10^{-6}-5\cdot 10_{-7}\%$. Практически из-за отсутствия достаточно чистого свинца в этих опытах брались уменьшенные навески свинца (до 0,005 г), но расчет содержания примеси делается на полную навеску свинца (0,3 г). Продолжительность анализа (две параллельные пробы и одна холостая) составляет около 6 часов.

Выволы

С использованием приема переноса электродов (смены электролитов) разработана ускоренная методика амальгамнополярографического определения Сu и Bi из одной навески свинца без отделения основы. Чувствительность определения $1\cdot 10^{-6} - 5\cdot 10^{-7}\%$. Продожительность анализа 6 часов.

ЛИТЕРАТУРА

- 1. Под редакцией И. П. Алимарина. Методы анализа веществ высокой чистоты. «Наука», 1965.
- 2. А. Г. Стромберг, Э. А. Стромберг. Заводская лабор., **27,** 3, 1961; **30,** 261, 1964.
- 3. Т. А. Крюкова, Т. В. Арефьева, С. И. Синякова. Полярографический анализ. Химиздат, М., 1959.

4. А. А. Каплин. Диссертация. ТПИ, Томск, 1966. 5. В А. Иголинский Лиссертация. ТПИ, 1963.

5. В. А. Итолинский. Диссертация, ТПИ, 1963.6. А. Г. Стромберг, Ю. Н. Жихарев. Завод. лабор., 31, 1185, 1965.