1961

ИССЛЕДОВАНИЕ РУДЫ РОЖДЕСТВЕНСКОГО МЕСТОРОЖДЕНИЯ ТОМСКОЙ ОБЛАСТИ КАК ПОГЛОТИТЕЛЯ СЕРОВОДОРОДА

К. К. СТРАМКОВСКАЯ, А. С. ПОЖИТНАЯ

(Представлено профессором доктором И. В. Геблером)

Рождественское месторождение болотной руды расположено у югозападной окраины деревни Рождественки, в шести километрах к северовостоку от с. Сергеево и в 40 км к северо-западу от районного центра с. Пышкино-Троицкого.

Геолого-литологический разрез месторождения по материалам представляется в следующем виде: 1) почвенно-растительный слой — 0.05—0.40 м; 2) горизонт руды —0.15—1.10 м; 3) глина светло-желтая видимой мощностью 1.45 м.

Отложения руды залегают в виде отдельных линз, вытянутых вдоль правого и левого берегов реки Татунайки. Длина линз изменяется от 100 до 800 м. Мощность горизонта руды изменяется от 0.05 до 1.1 м, в среднем составляет 0.4 м. Отложения болотной руды на месторождении перекрыты почвенно-растительным слоем темно-серого, почти черного цвета мощностью 0.4 м.

При изучении химического состава руды этого месторождения было обнаружено, что содержание CaO в пробах изменялось от 5,60 до 30,0%; Fe₂O₃ от 15,39 до 39,00%; Al₂O₃ от 3,63 до 13,31%; SiO₂ от 10,1 до 37,95%; Na₂O и K₂O от 0,5 до 1,37%. Потери при прокаливании от 13 до 33,72%.

По гранулометрическому составу руды состоят из 25—29% алевритовой фракции и от 4 до 12% песчаной фракции. В минералогическом отношении тяжелая фракция на 70—80% представлена гидроокислами железа. Остальные минералы характеризуются ярко выраженной рудноэпидото-роговообманковой ассоциацией. Кроме того, характерным является присутствие здесь пироксена, граната и турмалина. В легкой фракции до обработки ее десятипроцентным раствором соляной кислоты до 98% занимали мелкие зерна кальцита, окрашенные гидроокислами железа в темно-бурые и коричневые цвета. После обработки соляной кислотой в легкой фракции 38—45% составлял кварц. Полевой шпат занимал подчиненное положение по отношению к кварцу и составлял 10—20%. Запасы руды на месторождении составляют 31000 т [1].

Для выяснения технологических качеств руды, как поглотителя сероводорода, были исследованы пробы, которые приведены в табл. 1.

Таблица 1

Наименование проб и выработок		Интервал опробова- ния, м		Мощ- ность плас-	Содержание, %										Соотноше-	Насыпной
					нераст- воримый		Es O	SiO	CaO	MgO	Mn O		гигро-	гилрат-	ние молеку- лы воды к одному	I I W C DI II II O II
		ОТ	до	та, м	остаток	Al_2O_3	F e ₂ O ₃ .	3102	CaO	MgO	Mili	ипп	ской во- ды	ной воды		$\frac{c}{2/cM^3}$
Проба	0	***************************************			33,98	13,01	39,17	28,85	4,57	0,59	1,53	12,78			Burning William	0,666
Шурф	2	0,20	1,10	0,90	11,48	1,15	32,22	11,08	9,29	0,54	0,63	40,00	14,00	20,70	10:3	0,607
"	9	0,40	0,60	0,20	16,00	5,52	26,34	14,95	18,91	0,65	0,54	32,64	9,13	8,67	2:1	0,561
4	21	0,40	0,65	0,25	16,28	3,96	23,95	13,60	24,01	0,54	0,69	33,20		,		0,668
"	28	0,30	0,50	0,21	8,60	2,06	24,74	7,36	32,21	0,60	0,88	32,68	4,50	5,24	1:1	0,645
"	29	0,20	1,10	0,90	8,84	2,31	20,75	8,69	30,31	0,65	0,94	36,80				0,630
"	105	0,40	1,30	0,90	9,76	1,43	22,35	8,20	33,11	0,72	0,82	33,80	4,13	4,57	1:1	0,645
"	144	0,60	1,10	0,50	33,28	7,10	28,74	30,00	9,12	0,43	1,96	24,28	5,50	12,20	2:1	0,819

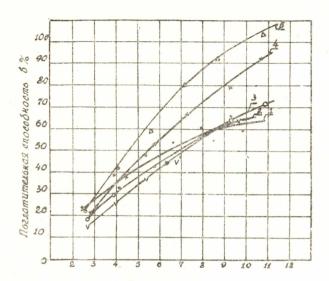
Кроме того, были составлены средние пробы, пропорционально мощности пластов (a) и пропорционально запасам руды в участках месторождения (δ) . Для сравнения исследовалась руда Кудиновского месторождения, отобранная со склада Кемеровского азотно-тукового завода. Место взятия одной из проб геологами указано не было, поэтому нами она названа нулевой (0).

Поглотительная масса составлялась из руды степени зернения 0,25—1 мм и древесных опилок, фракция 0,5—3 мм в соотношении 1:1 по объему. Масса подщелачивалась негашеной известью в количестве 0,5% по весу и увлажнялась до влажности 35—45% весовых процентов.

Для выяснения возможности увеличения активности поглотительной массы была составлена поглотительная масса из средней пробы (a) и торфа в соотношении 1:1 по объему.

Влажность очистной массы определялась высушиванием ее до по-

стоянного веса при температуре 100—105°.


Определение поглотительной способности проводилось на установке, собранной по схеме: сероводород, получаемый в аппарате Киппа, направлялся через склянку с водой, колонку с отработанной болотной рудой и осушители с CaCl₂, а затем, пройдя через реомер, поступал в колонку с исследуемой массой. После колонки с массой в двух хлоркальциевых трубках улавливалась влага, уносимая из поглотительной массы. Привес трубки с массой и хлоркальциевых трубок давал количество сероводорода, улавливаемое поглотительной массой [2]. Поглотительная способность массы выражалась в весовых процентах на сухую массу (руды и опилок). Для гарантии полного поглощения сероводород пропускался дополнительно два часа после прекращения разогрева колонки в результате затухания экзотермических реакций поглощения.

Изучение процесса регенерации поглотительных масс проводилось с целью определения максимальной сероемкости масс после нескольких циклов поглощения и регенерации. Сероочистные массы регенерировались влажным воздухом. Скорость пропускания воздуха 6—7 л/час. Конец регенерации определялся по постоянному весу и по изменению цвета из черного в коричневый, после чего массу вновь насыщали сероводородом. Необходимое для регенерации время колебалось от 2 до 4 часов.

Для большинства проб проведено пять регенераций и шесть поглощений, а для средних проб проведено по восемь регенераций и по девять насыщений. Полученные данные приведены в табл. 2 и на рис. 1. Таблица 2

Наимен	овани	e	Поглоти- тельная способ-		Макси- мальная поглоти-							
пр	об		но с ть до регенера-	пер-	вто- рой	тре- тьей	чет- вер- той	пя- той	шес- той	седь- мой	вось- мой	тельная способ- ность
Кудиновска	я руд	(a	22,20	11,15	9,37	4,48	6,70	5,74		_		64,64
Рождест-	проб	a 0	22,00	20,80	16,80	21,40	11,25	11,90				104,45
венская	ш	2	20,80	18,00	15,10	12,50	12,80	12,95		-		92,15
руда	и	144	17,50	12,30	14,30	11,90	7,65	7,55				71,35
	"	21	14,35	9,70	10,78	9,20	13,30	6,37				63,70
	и	28	13,40	11,95	9,15	6,50	6,00	7,25	and a second			54,25
	44	9	14,50	9,75	5,50	5,84	5,36	6,50				48,46
	46	105	12,90	9,20	8,20	5,70	6,10	3,90				46,00
	44	29.	9,00	6,00	5,70	4,60	6,00	5,75				37,05
	" C	ред.б	16,00	17,50	10,85	7,80	8,10	9,60	6,32	12,20	6,68	95,00
	st.	а	17,00	12,30	11,60	12,90	11,20	8,50	15,30	13,50	9,00	111,35

При графическом оформлении на осях координат откладывалась суммарная поглотительная способность и суммарное время поглощения, осуществляемое после каждой регенерации руды.

Время в часах Рис. 1. Поглотительная способность в зависимости от времени насыщения. 1—кудиновская руда; 2—рождественская руда—проба 21; 3—рождественская руда—проба 144; 4—рождественская руда—проба 2; 5—рождественская руда— проба 0.

Из полученных результатов следует, что после первой же регенерации поглотительная способность проб 0 и 2 оказывалась значительно выше, чем кудиновской руды, а после третьей и четвертой регенерации кудиновская руда показала меньшую поглотительную способность не только по сравнению с пробами 0 и 2, но также и с пробами 144, 21 и средней, составленной пропорционально запасам. Несмотря на то, что количество железа в пробах 0 и 2 значительно меньше, чем в кудиновской руде, однако, начальная поглотительная способность этих проб почти равна поглотительной способности кудиновской руды. Это объясняется, по-видимому, тем, что железо в рождественской руде более гидратировано, чем в кудиновской руде. Кроме того, в данной руде содержится окись марганца (от 0,5 до 2%). Рождественская руда также имеет большую щелочность, чем щелочность кудиновской руды, а это улучшает процесс поглощения сероводорода, так как в щелочной среде идет реакция с образованием сульфида окиси железа Fe_2S_3 , который хорошо регенерируется кислородом воздуха во влажной среде. В отсутствии щелочи или в недостаточном ее количестве реакция идет с образованием сульфида закиси железа. Последний может взаимодействовать с элементарной серой с образованием дисульфида Fe₂S₂ — соединения совершенно нерегенерируемого.

Кроме того, превращение окисной формы железа в закисную невыгодно для процесса очистки, так как каждый атом железа связывает только одну молекулу сероводорода. Сульфид железа также может окисляться за счет кислорода в сернокислое железо — соединение нере-

генерируемое.
Меньшая поглотительная способность проб 28, 29, 105, 9 объясняется не только невысоким содержанием окислов железа, но и слишком повышенной щелочностью этих проб, которая уменьшает активность железа, так как произведение растворимости гидратов окиси железа уменьшается с увеличением щелочности. Наиболее гидратированная форма

железа в пробах 0 и 2, естественно, показывает большую реакционную способность к сероводороду после регенерации руды воздухом. Кроме того, очевидно, щелочность в этих пробах является оптимальной для образования сульфидов закисной формы.

Максимальная поглотительная способность многих проб руды Рождественского месторождения значительно выше или равна максималь-

ной поглотительной способности кудиновской руды.

Выводы

1. Поглотительная способность по сероводороду болотной руды Рождественского месторождения до регенерации ниже поглотительной

способности кудиновской руды.

2. При чередовании циклов насыщения и регенерации общая поглотительная способность большинства проб рождественской руды выше, чем кудиновской, вследствие более благоприятного для этой цели ее минералогического состава.

3. Руда Рождественского месторождения с успехом может быть ис-

пользована для тонкой очистки газа от сероводорода.

ЛИТЕРАТУРА

1. В. М. Жуков. Отчет нерудной партии Томской комплексной экспедиции за 1958 г., г. Томск. 2. Берль-Лунге. Химико-технологические методы исследования, том IV,

выпуск второй, Москва, 1940.

З. Ю. Д. Кернос, Н. И. Бродская, В. П. Теодорович. Газовая промышленность, № 10, 1956.