ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Tom 197

1975

ПРИМЕНЕНИЕ АНИОННОГО ОБМЕНА ДЛЯ ОТДЕЛЕНИЯ И КОНЦЕНТРИРОВАНИЯ СЛЕДОВ МЕДИ

Р. Д. ГЛУХОВСКАЯ, Ю. Л. ЛЕЛЬЧУК, Е. Д. ЛУККЕР

(Представлена научным семинаром кафедры аналитической химии)

Следы железа и меди вредно влияют на свойства некоторых люминофоров. Ранее [1—3] нами изучены сорбция и десорбция хлоридных комплексов двух- и трехвалентного железа. В результате исследования найдены оптимальные условия отделения и концентрирования следов железа при определении микроколичеств этого элемента в люминофоре Л-34 и материалах, используемых для его производства. Разработанный на этой основе сорбционно-фотометрический метод определения следов железа в этих материалах [4] достигает чувствительности 10^{-6} — 10^{-7} %.

В настоящей работе изучены оптимальные условия сорбции и десорбции меди на анионитах АН-2Ф и цералит FF с целью выяснения возможности одновременного отделения, концентрирования и определения следов меди и железа из одной навески при определении микропримесей этих элементов в некоторых материалах производства люминофоров.

Экспериментальная часть

Во всех наших опытах использовалась особо чистая соляная кислота, практически полностью очищенная от следов железа и меди изотермической перегонкой и последующей хроматографической очисткой [4]. Все другие реактивы квалификации х. ч., вода трижды перегнанная. Последний раз вода перегонялась из кварцевого аппарата.

Исходный стандартный раствор меди с титром 100 мкг/мл готовился из чистой меди. Навеска меди в кварцевом стакане растворялась в азотной кислоте, выпаривалась с серной кислотой до появления паров серного ангидрида, и раствор доводился в мерной колбе до нужного объема водой.

Рабочий стандартный раствор меди с титром $1 \ m\kappa e/mn$ готовился каждый раз в день его употребления, соответствующим разбавлением исходного раствора соляной кислотой, требуемой для данной серии опытов нормальности.

Медь в элюатах определялась экстракционно-фотометрическим методом в виде комплекса с диэтилдитиокарбаматом натрия. В качестве экстрагента использован хлороформ. Экстракция проводилась при рН 4-5. Среда поддерживалась аммиачно-ацетатной буферной смесью. Такая смесь готовилась добавлением к 64,3 мл концентрированной уксусной кислоты 19,7 мл концентрированного аммиака и воды до 100 мл. рН смеси оказалась равной 4,2. Диэтилдитиокарбамат натрия использован в виде 0,1% -ного раствора в воде.

Изучение сорбции и десорбции меди и железа

В работе использованы хроматографические колонки с анионитами АН-2Ф и цералит FF в хлор-форме [2].

Первыми опытами было установлено полное отсутствие сорбции меди анионитами из 0,1 N раствора HCl с различными добавками стандартного раствора меди и доказана возможность использования соляной кислоты такой концентрации для элюирования меди из колонок.

В наших дальнейших опытах для изучения влияния концентрации HCl на сорбцию меди через анионитовую колонку каждый раз пропускались 10 мл HCl данной нормальности с определенной добавкой меди со скоростью вытекания 2—3 мл/мин. Зарядка анионита в хлорформу и промывание сорбированных комплексов проводились соляной кислотой той же концентрации. Для элюирования меди через колонку с той же скоростью пропускалась 0,1 N HCl. По мере прохождения этой кислоты слой анионита светлеет. Когда внизу оставался темнобурый слой толщиной в 2—3 см, кран закрывался, обмывался водой и для определения меди собирали 15 мл элюата в делительную воронку.

К элюату добавляли несколько капель фенолфталеина, аммиака до слаборозовой окраски, 2 мл аммиачно-ацетатной буферной смеси с рН 4,2, 2 мл раствора диэтилдитиокарбамата натрия и образующийся комплекс меди экстрагировали 2 раза хлороформом по 5 мл. Экстракты доводили хлороформом в мерной колбе до 25 мл и измеряли оптическую плотность раствора на фотоколориметре-нефелометре ФЭКН-57 в кювете с толщиной слоя 5 см при синем светофильтре с максимумом пропускания в 453 ммк. Раствором сравнения служил хлороформ.

Для построения калибровочного графика опыты проведены в тех же условиях, только вместо элюата брались соответствующие количества стандартного раствора меди. Полученные данные о сорбции меди приведены в табл. 1. Они показывают, что анионит АН-2Ф количественно сорбирует медь из растворов НС1 7—10N, цералит FF—5-9N.

Таблица 1 Сорбция меди на анионитах АН-2Ф и цералит FF из растворов соляной кислоты. Через колонку с АН-2Ф пропускался раствор 5 мкг меди в 10 мл соляной кислоты соответствующей нормальности, с цералитом FF — 4, 77 мкг меди

Нормаль- ность НС1	Сорбировано меди на АН-2Ф			Сорбировано меди на цералите			
	1-я колонка	2-я колонка	среднее	1-я кол о нка	2-я колонка	среднее	
0,1	0,0	0,0	0,0	0,0	0,0	0,0	
1	0,0	0,0	0,0	0,0	0,0	0,0	
2	0,0	0,0	0,0	0,0	0,0	0,0	
3	0,0	0,0	0,0	0,80	0,62	0,7	
4	0,80	0,50	0,65	3,75	3,40	3,57	
5	2,70	2,45	2,58	4,75	4,71	4,73	
6	4,30	4,20	4,25	4,75	4,77	4,76	
7	5,05	4,75	4,90	4,80	4,75	4,7	
8	4,75	5,05	4,90	4,78	4,80	4,7	
9	4,95	5,05	5,00	5,00	4,84	4,9	
10	4,78	4,60	4,69	garantis,	-		

Данные о динамике процесса вымывания меди из колонок с АН-2Ф или цералитом FF 0,1 N раствором соляной кислоты приведены в табл. 2. Аналогичные данные нами были получены ранее по железу [1, 2, 3].

Нами также определены обменные емкости анионитов по меди и железу и вычислены коэффициенты распределения этих элементов [5].

Фракции элюата Найдено меди, мкг Сорбировано Анионит 1-я колонка объем, 2-я колонка меди, мкг No среднее мл 3 АН-2Ф 4,77 0,0 0,0 0,0 23 $\begin{array}{c}
 2 \\
 2 \\
 2 \\
 2 \\
 2 \\
 2
 \end{array}$ 0,0 0,0 0,0 1,05 0,0 0,53 . 2,35 1,65 4 0,85 1,60 5 2,10 1,88 6 0,55 0,68 0,80 0,0 0,0 0,0 0,0 0,0 0,0 4,55 Всего найдено меди 4,80 4,69 0,0 0,0 5,28 2 2 2 2 2 2 2 2 2 2 2 2 0,0 Цералит FF 23 0,0 0,0 0,0 0,0 0,0 0,0 0,50 0,0 0,25 $\begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \end{array}$ 2,50 3,80 3,15 1,70 1,65 1.60 0,30 0,57 0,85 8 0,0 0,0 0,0 9 0,0 0.0 0,0

Медь определялась колориметрическим методом в виде аммиачного комплекса [6], железо— в виде роданида железа [7]. Полученные данные приведены в табл. 3 и 4.

Всего найдено меди

Таблица 3 Обменная емкость анионитов по меди и коэффициент распределения меди. Объем раствора 25 мл. Эквивалент меди 31,77.

5,45

5,80

5,62

Анионит	Нормальность НС1	Содержание меди в растворе, <i>мг</i>		Сорбировано меди, мг		Обменная	Коэф.
		до сорбции	после сорбции	0,5 г анионита	1 г анионита	емкость, мг-экв/г	распре- деления
АН-2Ф	9 8	15,62 15,62	8,25 11,59	7,37 4,03	14,74 8,06	$0,468 \\ 0,254$	44,7 17,4
Цералит FF	9 8 7 6	11,72 11,72 11,72 11,72 11,72	8,75 8,75 8,62 9,65 11.00	2,97 2,97 3,10 2,07 0,72	5,94 5,94 6,20 4,14 1,44	0,188 0,188 0,197 0,132 0,046	17,0 17,0 18,0 10,2 3,30

Таблица 4 Обменная емкость анионитов по железу и коэффициент распределения железа. Объем раствора 50 мл. Эквивалент железа 18,62

Democratic description of the de	Норма л ьность НСІ	Содержание железа в растворе, <i>мг</i>		Сорбировано железа, <i>мг</i>		Обменная	Коэф.
Анионит		до со р бции	после сорбции	0,5 <i>г</i> анионита	1 г анионита	емкость, <i>мг-экв</i> /г	распре- деления
АН-2Ф	9 8	15,5 15,5	7,55 9,60	7,95 5,90	15,90 11,80	0,539 0,412	105,9 50,4
Цералит FF	9 8 7 6	30,12 30,12 30,12 9,24 6,16	3,75 5,60 7,10 3,40 4,00	26,37 24,52 23,02 5,84 2,16	52,74 49,04 46,04 11,68 4,32	2,46 2,63 2,47 0,62 0,23	703,2 437,8 324,2 171,7 54.0

В выполнении экспериментальной части работы активно участвовали студентки Г. Н. Дембовская и А. Н. Муран.

Выводы

Изучены процессы сорбции и десорбции меди на анионитах АН-2Ф и цералит FF. Установлено, что области концентрации соляной кислоты, при которых происходит количественная сорбция и количественная десорбция хлоридных комплексов меди, мало чем отличаются от таковых для железа. Это открывает возможность одновременного отделения и концентрирования меди и железа при определении следов этих элементов из одной навески в некоторых материалах производства люминофоров.

ЛИТЕРАТУРА

- 1. Р. Д. Глуховская, Ю. Л. Лельчук. Труды 1-й научной конференции Томского отделения ВХО им. Д. И. Менделеева. Томск, 1967.
- 2. Ю. Л. Лельчук, Р. Д. Глуховская. Изв. ТПИ, **148**, 68, 1966. 3. Р. Д. Глуховская, Ю. Л. Лельчук, Е. Д. Луккер. Изв. ТПИ, 152, 40, 1967.
- 4. Р. Д. Глуховская, Ю. Л. Лельчук. Тезисы докладов Совещания по ана-
- литической химии полупроводниковых веществ. 19, 46, Кишинев, 1965.

 5. И. П. Алимарин, Т. А. Белявская. Хроматография, ее теория и применение, 372. Изд. АН СССР, М., 1960.
 - 6. В. Н. Алексеев. Количественный анализ, 478, Госхимиздат, М., 1958.
- 7. Е. Сендел. Колориметрические методы определения следов металлов. Изд. «Мир», М., стр. 471, 1964.