Том 202

1973

ЭФФЕКТИВНОСТЬ И ДОСТОВЕРНОСТЬ АППАРАТУРНОГО КОНТРОЛЯ ЦИФРОВЫХ УСТРОЙСТВ

Н. П. БАЙДА

(Представлена научным семинаром кафедры вычислительной техники)

Важнейшие показатели качества схем аппаратурного контроля (АК) цифровых устройств (ЦУ) — эффективность [1—10] и достоверность [11] контроля не являются в настоящее время четко определенными. Для уточнения этих понятий рассмотрим совокупность различных состояний ЦУ с АК (табл. 1). При этом под эффективностью контроля будем понимать вероятность обнаружения ошибки, появившейся в ос-

Таблица 1

Событие	Состояние контроли- руемой схемы	Состояние схемы контроля	Реакция схемы контроля	Примечание
$H_0 \\ H_1 \\ H_2 \\ H_3 \\ H_4 \\ H_5 \\ H_6 \\ H_7$	A 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B 0 0 1 1 0 0 0 1 1 1	C 0 1 0 1 0 1 0 1 1 0 1	Состояние исправной работы системы Невозможное событие Определяет Э _{сам} Определяет Э _м

новной схеме (ОС). Такой критерий эффективности в соответствии с терминологией теории исследования операций [12] наиболее точно отражает цель, стоящую перед схемой контроля (СК), — обнаружить максимальное количество возможных ошибок в ОС, и поэтому получил наибольшее распространение [5—10].

В табл. 1 цифра 0 в зависимости от номера столбца означает отсутствие ошибок в ОС (\overline{A}) , схеме контроля (B) или отсутствие сигнала ошибки на выходе СК (\overline{C}) . События H_i (i=0,7) определяют состояния системы (под системой в данном случае понимается совокупность основной схемы и схемы АК). Например, событие H_3 означает, что ОС исправна, а в схеме контроля есть ошибка, которая обнаруживается. Назовем условную вероятность $P(C/\overline{AB}) = \Im_{\text{сам}}$ ффективностью самоконтроля, а $P(C/\overline{AB}) = \Im_{\text{м}}$ — эффективностью метода контроля.

Анализируя табл. 1, можно сказать, что эффективность контроля как вероятность обнаружения ошибки, появившейся в OC - P(C/A),

определяется событиями H_4 — H_7 . Используя теорему умножения вероятностей, можно записать

$$P(C/A) = \frac{P(AC)}{P(A)}.$$
 (1)

Согласно табл. 1

$$P(AC) = P(H_5) + P(H_7) = P(ABC) + P(ABC).$$
 (2)

Подставляя (2) в (1) и учитывая, что события A и B независимы, а событие C зависит от A и B, получим

$$\vartheta = P(C/A) = \frac{P(A\overline{B}C) + P(ABC)}{P(A)} =$$

$$=\frac{P(AB)\cdot P(C/A\overline{B})+P(AB)\cdot P(C/AB)}{P(A)}=P(\overline{B})\cdot \Im_{M}+P(B)\cdot P(C/AB).$$

Отсюда следует, что эффективность контроля определяется эффективностью метода контроля, вероятностью безошибочной работы схемы контроля и вероятностью обнаружения многократных ошибок, появляющихся одновременно в основной и контрольной аппаратуре.

При анализе достоверности АК целесообразно рассматривать два

критерия.

- 1 $\mathcal{L}_1 = P(A/C)$ достоверность положительного результата контроля (вероятность наличия неисправностей в OC, если на выходе CK есть сигнал ошибки). Здесь и далее под неисправностью понимается отказ или сбой произвольной кратности. Причем предполагается, что неисправность определяет ошибку такой же кратности.

По формуле Бейеса имеем

$$D_{1} = P(A/C) = \frac{P(A) \cdot P(C/A)}{P(A) \cdot P(C/A) + P(\overline{A}) \cdot P(C/\overline{A})} =$$

$$= \frac{P(A) \cdot P(C/A)}{P(A) \cdot P(C/A) + P(\overline{A}) [1 - P(C/A)]} =$$

$$= \frac{P(A) \cdot P(C/A)}{P(A) \cdot P(\overline{A}) \cdot P(\overline{A}) [1 - P(C/\overline{A})]}.$$

$$(4)$$

Условная вероятность $P(\overline{C}/\overline{A})$ есть вероятность того, что сигнал на выходе СК не появится, если неисправности в ОС отсутствуют. По аналогии с формулами (1—3) можно записать

$$P(\overline{C}/\overline{A}) = \frac{P(\overline{A}\overline{C})}{P(\overline{A})} = P(\overline{B}) + P(B)(1 - \vartheta_{\text{cam}}).$$
 (5)

Отсюда следует, что для увеличения вероятности $P(C/\overline{A})$ необходимо повышать вероятность исправной работы СК и уменьшать «отрицательное» влияние эффективности самоконтроля. Последнего можно достигнуть путем введения диагностических тестов, различающих неисправности, появляющиеся в основной и контрольной аппаратуре. Тогда в (5) необходимо вместо $\Theta_{\text{сам}}$ рассматривать

$$\mathfrak{S}_{\mathsf{cam}}^* = \mathfrak{S}_{\mathsf{cam}} \cdot \mathfrak{K}_{\mathsf{c}}, \tag{6}$$

где K_c — коэффициент, показывающий, какой процент ошибок в схеме контроля вызывает появление сигнала "отказ системы" (рис. 1).

Достоверность отрицательного результата контроля определяется аналогично D₁

 $D_{0} = P(\overline{A}/\overline{C}) = \frac{P(\overline{A}) \cdot P(\overline{C}/\overline{A})}{P(\overline{A}) \cdot P(\overline{C}/\overline{A}) + P(A) \cdot P(A) \cdot 9}.$ (7)

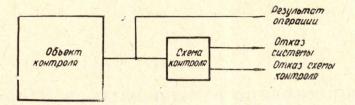


Рис. 1. Блок-схема системы

Если АК позволяет не только обнаруживать, но и корректировать ошибки, то надо учитывать дополнительный критерий эффективности — вероятность исправления ошибки, появившейся в ОС $(Э_{H})$. Этот критерий также можно рассчитывать по формуле (3), понимая под Эм и P(C/AB) соответствующие вероятности исправления ошибок.

Выводы

1. Проведен анализ важнейших показателей качества схем аппаратурного контроля цифровых устройств: эффективности и достоверности контроля.

2. В результате анализа выбраны два критерия эффективности: вероятность обнаружения и вероятность исправления ошибки, появившейся в основной схеме, и два критерия достоверности: достоверность

положительного и отрицательного результатов контроля.

3. Исходя из рассмотрения таблицы состояний ЦУ с АК выведены формулы для расчета указанных критериев эффективности и достоверности контроля на ранних этапах проектирования системы.

ЛИТЕРАТУРА

1. «Основы проектирования управляющих машин промышленного назначения». Под ред. Б. Н. Малиновского. «Машиностроение», 1969.

2. А. М. Сидоров. Методы контроля электронных цифровых машин. М., «Со-

ветское радио», 1966.

3. Э. Я. Петерсон, Н. Д. Путинцев. Критерии оценки эффективности системы контроля ЭЦВМ по обеспечению достоверности выходной информации. - «Ав-

томатика и вычислительная техника», 1968, № 3. 4. Э. Я. Петерсон, Н. Д. Путинцев. Выбор параметров схем контроля в трактах управляющих ЭЦВМ. Изв. АН СССР. «Тех. кибернетика», 1969, № 5.

5. В. Н. Веригин. Основные характеристики аппаратного контроля с обна-

ружением ошибок применительно к ЦВМ, ИТМ и ВТ АН СССР. М., 1966. 6. Н. Д. Путинцев. Аппаратный контроль управляющих цифровых вычислительных машин. М., «Советское радио». 1966.
7. Ю. Г. Зайко. К вычислению эффективности контроля по модулю. — «Ки-

бернетика», 1967, № 6.

8. Г. Н. Ушакова. Аппаратный контроль и надежность специализированных ЭВМ. М., «Советское радио», 1969.
9. Н. П. Байда, В. М. Разин, В. М. Танасейчук. К вопросу о расчете эффективности системы аппаратного контроля электронных цифровых вычисли-

тельных машин. XXV Всесоюзная научная сессия, посвященная Дню радио и Дню связиста. (Аннотации и тезисы докладов). М., 1969.

10. Н. П. Байда, В. М. Разин, В. М. Танасейчук. К вопросу оптимального выбора эффективностей системы аппаратного и тестового контроля ЭВМ по критерию достоверности вычислений. II Всесоюзная конференция по техниче-

ской кибернетике. (Аннотации и тезисы докладов). М., 1969.

11. В. И. Перов, Т. Д. Жолковер. Способы оценки и некоторые пути повышения достоверности результатов автоматического контроля. Автоматический контроль и методы электрических измерений. Труды V конференции. Т. 2, Новосибирск, 1966.

12. Е. С. Вентцель. Введение в исследование операций. М., «Советское радио», 1964.