ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Tom 205

КОЭФФИЦИЕНТЫ ТЕПЛОПРОВОДНОСТИ ОБМОТОК ИЗ ПРОВОДА МАРКИ ПЭМС

Л. С. КОНОВАЛОВА, А. С. ЛЯЛИКОВ

(Представлена проф. докт. Г. И. Фуксом)

Провод манганиновый стабилизированный эмалированный марки ПЭМС [1] широко применяется в приборостроении в качестве намоточного при изготовлении электрических катушек. Для расчета температурного режима последних необходимы данные о коэффициентах теплопроводности обмоток.

Обнаружить в литературе какие-либо сведения по этому вопросу не удается. Задача настоящей работы заключалась в получении экспериментальных данных по теплопроводности обмоток из провода марки ПЭМС.

Опыты проводились в соответствии с методом, в основу которого положено решение задачи о температурном поле короткой трубы с внутренними источниками тепла, рассеивающей тепло по наружной и торцевым поверхностям (внутренняя поверхность в теплообмене не участвует) — рис. 1-а. Записав решение дифференциального уравнения, описывающего температурное поле в такой трубе

$$\frac{\partial^{2}t(r, y)}{\partial r^{2}} + \frac{1}{r}\frac{\partial t(r, y)}{\partial r} + \frac{\partial^{2}t(r, y)}{\partial y^{2}} + \frac{q_{v}}{\lambda} = 0$$
 (1)

в виде суммы двух функций

$$t(r, y) = F(r) + \Phi(y)$$
 (2)

и, подставляя частные производные для (2) в (1), получим

$$F''(r) + \frac{1}{r}F'(r) = -\left[\Phi''(y) + \frac{q_v}{\lambda}\right]. \tag{3}$$

Уравнение (3) должно быть действительно при любых значениях r и y, что возможно только при равенстве обеих частей его постоянной величине, которую обозначим — $\frac{q}{r}$

$$F''(r) + \frac{1}{r}F'(r) = -\frac{q_v}{\lambda \epsilon},$$
 (4)

$$\Phi''(y) = \frac{\varepsilon - 1}{\varepsilon} \frac{q_v}{\lambda}. \tag{5}$$

Подставив интегралы этих уравнений в (2), получим

$$t(r, y) = -\frac{q_v r^2}{4\lambda \varepsilon} + C_3 \ln r - \frac{\varepsilon - 1}{\varepsilon} \frac{q_v}{2\lambda} y^2 + C_1 y + C_2 + C_4, \tag{6}$$

где C_1 , C_2 , C_3 , C_4 — постоянные интегрирования.

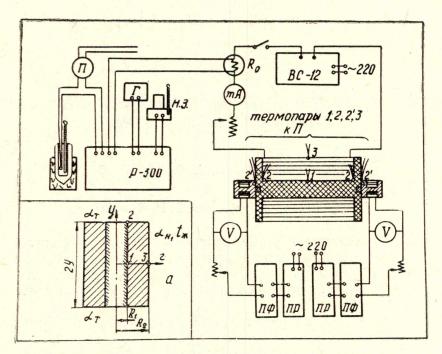


Рис. 1. Схема экспериментальной установки

Условия изоляции трубы по внутренней цилиндрической поверхности и симметрии относительно оси у

$$\frac{\partial t(R_1, y)}{\partial r} = 0, \quad (7) \qquad \frac{\partial t(r, 0)}{\partial y} = 0 \tag{8}$$

позволяют определить $C_3 = \frac{q_v R_1^2}{2 \lambda \epsilon}$ и $C_1 = 0$ и записать (6) в виде

$$t(r, y) = \frac{q_v}{2\lambda \varepsilon} \left[-\frac{r^2}{2} + R_1^2 \ln r - (\varepsilon - 1) y^2 \right] + D, \tag{9}$$

где $D = C_2 + C_4$.

Будем считать, что температуры t_1 , t_2 , t_3 в точках 1 $(R_1, 0)$, 2 $(R_1 Y)$ и 3 $(R_2, 0)$ измеряются во время эксперимента и являются известными. Тогда решив совместно уравнения, записанные на основании (9) для точек 1 и 3, получим:

$$\varepsilon = \frac{q_v \left(R_2^2 - R_1^2 - 2R_1^2 \ln \frac{R_2}{R_1} \right)}{4\lambda (t_1 - t_3)},$$
(10)

$$D = t_1 - (t_1 - t_3) \frac{R_1^2 (2 \ln R_1 - 1)}{R_2^2 - R_1^2 - 2R_1^2 \ln \frac{R_2}{R_1}}.$$
 (11)

Решение относительно λ уравнений (10), (11) и (9), записанного для точки 2, с учетом, что $2 V = L, \ q_v = \frac{4P}{\pi \left(d_2^2 - d_1^2\right) L}$ дает

$$\lambda = \frac{ALP}{2\pi \left(d_2^2 - d_1^2\right) \left[A\left(t_1 - t_2\right) + 2L^2\left(t_1 - t_3\right)\right]},\tag{12}$$

где
$$A=d_{2}^{2}-d_{1}^{2}-2d_{1}^{2}\ln\frac{d_{2}}{d_{1}},\quad d_{2}=2R_{2},\quad d_{1}=2R_{1},$$

Р — мощность, выделяющаяся во всем объеме трубы.

Сопоставление для частного примера расчетов температурного поля конечной трубы с внутренними источниками тепла, проведенных на ЭЦВМ Минск-I методом элементарных балансов с расчетами по (9), (10) и (11), в которых в качестве экспериментальных значений температур t_1 , t_2 , t_3 подставлялись температуры, полученные указанным вычислением на ЭЦВМ, показало, что результаты расчетов полностью согласуются между собой, учитывая приближенность метода элементарных балансов.

Осуществить экспериментальное определение коэффициентов теплопроводности обмоток, основываясь на изложенных соображениях и

полученной формуле (12) оказалось практически несложно.

Опытный образец представлял собой каркас из текстолита с намотанным проводом и четырьмя термопарами 1, 2, 2, 3. Условие термоизоляции по R_1 обеспечивалось охранными нагревателями, выполненными в виде медных катушек диаметром $2R_1$ с нагревательной обмоткой и термопарой 2'. С помощью нагревателей во время опыта поддерживалась одинаковость температур в точках 2 и 2'. Идентичность условий теплообмена на обоих торцах автоматически выполнялась при горизонтальном положении оси катушки при проведении опыта в условиях естественной конвекции.

Схема экспериментальной установки приведена на рис. 1.

Регулирование показаний термопар 2' до совпадения с показаниями соответственных термопар 2 проводилось за счет изменения тока в охранных нагревателях с помощью реостатов и оказалось легко осуществимым в пределах + 0,02 мв, что соответствует 0,5°C.

Измерение э. д. с. термопар и тока в обмотке образца производилось при стациснарном тепловом режиме. Продолжительность опыта состав-

ляла 2—3 часа.

Следует отметить, что во время опыта термопара 3 находилась не на верхней образующей внешней цилиндрической поверхности обмотки, а в точке, отклоненной от верхней образующей на $\phi = 70 \div 75$ градусов. При таком положении получается средне интегральное значение коэффициента теплопроводности. Этот результат получен на основе обработки специально проведенных опытов по определению λ при различных положениях термопары 3 в диапазоне $\phi = 0 \div \pi$.

Экспериментальное определение коэффициентов теплопроводности проводилось для непропитанных и пропитанных обмоток из провода ПЭМС всех диаметров от 0,05 мм до 0,5 мм, входящих в номенклатуруТУ 017, 109—65. Пропитка — вакуумная эпоксидным компаундом 1 Н ТУ ОАТ 504 005 Томского филиала ВНИИЭМ с сушкой в соответствии

с технологией предприятия.

Для каждого образца проводилось 6-7 опытов на различных ре-

жимах в интервале температур 50 ÷ 100°C.

После проведения опытов и их обработки для каждого образца построены зависимости $\lambda = f(t)$, которые позволили сделать следующие выводы. Для непропитанных обмоток из тонкого провода (до \varnothing 0,1 мм) λ обмотки не зависит от температуры, а для обмоток из провода \varnothing 0,1 \div 0,5 мм наблюдается линейная возрастающая зависимость λ от t, слабо выраженная для обмоток из провода \varnothing 0,1 мм (изменение λ составляет 3—5%), заметнее — для обмоток из провода \varnothing 0,5 (8 \div 10%);

для пропитанных обмоток зависимость λ от t проявилась для обмоток из провода \emptyset 0,15 и выше, но во всех случаях она не превосходит 3—5%. Столь слабое влияние температуры на λ позволило достаточно надежно осреднить значения λ для каждого образца, используя в качестве осредненных величин значение λ при $t=75^{\circ}\mathrm{C}$, а также найти средне-арифметическое λ для нескольких образцов из провода одного и того же диаметра (разброс осредняемых данных от их средне-арифметических величин не превышал 3-4%). Полученные таким образом осредненные λ для непропитанных и пропитанных обмоток из провода различных диаметров представлены на рис. 2.

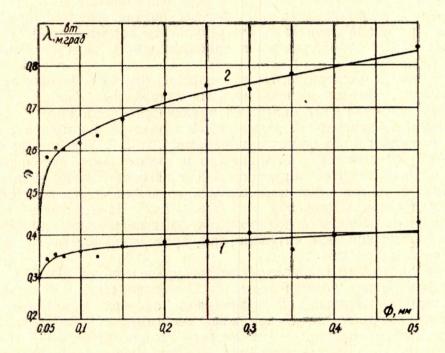


Рис. 2. Осредненные значения коэффициентов теплопроводности обмоток из провода марки $\Pi \ni MC$. 1— непропитанные обмотки, 2 — пропитанные обмотки

Из рис. 2 следует, что коэффициент теплопроводности непропитанных обмоток из провода диаметром, большим 0,1 мм, а для пропитанных обмоток из провода диаметром, большим 0,2 мм, практически не зави-

Таблица 1 Коэффициенты теплопроводности λ обмоток из провода марки ПЭМС, в m/m. граз

Диаметр провода об- мотки, <i>мм</i>	Непро- питан- ных	Пропи- танных	Диаметр провода об- мотки, м м	Непро- питан- ных	Пропи- танных
0,05 0,06 0,07 0,08 0,10 0,12 0,15	0,300 0,335 0,350 0,355 0,360 0,365 0,375	0,415 0,570 0,595 0,605 0,625 0,645 0,675	0,20 0,25 0,30 0,35 0,40 0,50	0,380 0,385 0,390 0,395 0,400 0,405	0,710 0,735 0,760 0,780 0,800 0,830

сит от диаметра провода. Незначительный разброс точек от осредняющих кривых 1 и 2 на рис. 2, вероятнее всего, связан с возможной не-

идентичностью ручной намотки образцов, с пропиткой их и другими случайными факторами. Поэтому в качестве коэффициентов теплопроводности обмоток из провода марки ПЭМС различных диаметров целесообразно использовать наиболее вероятные значение д, полученные рассечкой кривых 1 и 2, рис. 2, которые приводятся в табл. 1.

В результате проведенной оценки систематических и случайных погрешностей за счет возможного смещения термопар от заданных координат, а также за счет оттока тепла через бурты каркаса из-за возможного несоответствия температур в точках 2 и 2' на 0.5°C (+0.02 мв)

предельная погрешность метода составила + 11%.

Следует отметить, что удовлетворительное согласование результатов для непропитанных обмоток (табл. 1) с результатами [3], полученными для обмоток из того же провода с помощью метода «трубы», подтверждает надежность приведенных данных по коэффициентам теплопроводности обмоток из провода ПЭМС.

ЛИТЕРАТУРА

1. Кабели, провода и шнуры электрические. Т.У., ч. III. Т.У. 017. 109—65. Отделение НИИЭМ по научно-технической информации, стандартизации и нормализации в электротехнике, М., 1966. 2. А. Н. Зайдель. Элементарные оценки ошибок измерения. Изд. «Наука»,

Л., 1967.

3. А. С. Ляликов. Опытные данные о коэффициенте теплопроводности обмоток из провода марки ПЭМС. Сб. статей «Исследование по электроизмерительным приборам». Труды ВНИИЭП, Ц.Б.Т.Н., М., 1961, вып. 4.