И З В Е С Т И Я ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 212

1971

КОММУТАЦИОННАЯ РЕАКЦИЯ ЯКОРЯ МАШИН ПОСТОЯННОГО ТОКА С ГЛУБОКИМ РЕГУЛИРОВАНИЕМ СКОРОСТИ ВРАЩЕНИЯ

А. И. Скороспешкин, Э. Г. Чеботков

(Рекомендована семинаром кафедр электрических машин и общей электротехники)

В машинах постоянного тока с глубоким регулированием скорости вращения ослаблением поля н. с. коммутационной реакции якоря $F_{\rm R}$ составляет значительную долю от н. с. главного полюса. Например, для машины П50 при п=3000 об/мин и $I_{\rm H}$ =20 а н. с. $F_{\rm R}$ равна примерно 22% от н. с. главного полюса. Поэтому в машинах с глубоким регулированием скорости ослаблением поля определение и учет $F_{\rm K}$ необходимы.

В [1] предложен способ расчета н. с. F_к применительно к машинам постоянного тока при регулировании скорости вращения от 600 до 2000 об/мин. В общем случае машины с ослаблением поля имеют больший диапазон регулирования скорости. Поэтому целью настоящей работы является получение аналитического метода расчета F_к при регулировании скорости вращения от 400 до 3200 об/мин.

Н. с. коммутационной реакции якоря равна F_к=i_{иср}w_{ся},

(1)

где

i_{дер} — средний добавочный ток коммутации,

w_{ся} — среднее число витков секции якоря. При этом среднее значение добавочного тока коммутации в расчете на один полюс машины согласно [1] определяется:

для простой петлевой обмотки

$$\mathbf{i}_{\mathrm{dcp}} = 2 \frac{\mathbf{b}_{\mathrm{m}} - \mathbf{b}_{\mathrm{M}}}{\pi \mathbf{b}_{\mathrm{K}}} \mathbf{i}_{\mathrm{dm}} = \mathbf{m}_{1} \mathbf{i}_{\mathrm{dm}}, \tag{2}$$

для простой волновой обмотки

$$i_{\rm gcp} = 2 \frac{b_{\rm m} - b_{\rm M} + (b_{\rm K} - \tau + y_{\rm K} b_{\rm K})}{\pi \cdot b_{\rm K}} i_{\rm dm} = m_2 i_{\rm dm}, \qquad (3)$$

где

 $\tau = \frac{ \substack{b_{m} \\ b_{\kappa} \\ - коллекторное деление, \\ b_{M} \\ - межламельное расстояние, \\ \hline \pi D_{\kappa} \\ p \\ \hline p \\ y_{\kappa} \\ i_{m} \\ mar обмотки по коллектору, \\ i_{m} \\ - амплитудное значение добавочного тока, соответст-вующее оптимальной коммутации. \\ \hline \end{cases}$

Таким образом,

$$F_{\kappa} = i_{\text{дср}} \cdot w_{c\pi} = m i_{\text{дm}} \cdot w_{c\pi}, \qquad (4)$$

где коэффициент in в зависимости от типа обмотки определяется из выраженной (2) или (3). Экспериментальное определение F_к в [1] проводилось с использованием методики [2]. Однако применение ее на испытуемой машине выявило значительную погрешность эксперимента. Эта погрешность заключается в следующем.

Согласно [2] снимается зависимость н. с. главного полюса Frn от тока подпитки попеременно в генераторном и двигательном режиме. Из-за намагничивания возможно смещение остаточного зависимостей F_{гп}=f(I_п/I_я) параллельно самим себе. Поэтому точка пересечения прямых F_{rn}=f(I_n/I_n), соответствующая прямолинейной коммутации, может сместиться в ту или иную сторону от истинной, что вызывает значительную погрешность в определении F_в. Эта погрешность особенно велика, когда машина в силу каких-либо причин имеет значительную величину н. с. продольной реакции якоря, например, из-за несимметрии магнитной системы. Так, для машины П50 н. с. F_к, определенная по методике [2], представлена на рис. 1, где прямые 1, 1' и F_{к1} получены при первом испытании, прямые 2, 2' и F_{к2} — при повторном испытании, прямые 1, 2 соответствуют двигательному режиму работы машины, прямые 1', 2' --генераторному.

Расхождение между $F_{\kappa 1}$ и $F_{\kappa 2}$ составляет около 40%. Погрешность может быть устранена, если для определения F_{κ} использовать следующий способ.

С помощью датчика эдс Холла, закрепленного на середине главного полюса, снимается зависимость $F_{rn} = f(I_n/I_n)$ для любого режима работы машины при n = const и I_n = const. Полученная зависимость с помощью метода наименьших квадратов аппроксимируется в уравнение прямой вида

Рис. 1

Используя (5), н. с. коммутационной реакции якоря (рис. 2) равна F_к=b(P-M),

(6)

(5)

где Р — значение I_п/I_я, соответствующее оптимальной коммутации и определяемое из безыскровых зон работы машины.

М — значение І_п/І_я, соответствующее прямолинейной коммутации.

Значение тока подпитки, соответствующее прямолинейной коммутации, может быть определено с помощью метода потенциальных щеточных диаграмм в виде [3]. Однако при небольшой ширине щетки данный метод может вызвать значительную погрешность из-за неодинакового

Рис. 2

удаления от краев щетки заделанных в нее проводников. Поэтому на сбегающий и набегающий края щетки наклеивались полоски медной фольги толщиной 0,05 мм. Для изоляции от обоймы щеткодержателя фольга обклеивается капроновой пленкой. Припаянные к фольге проводники выводятся к измерительному прибору.

Экспериментальное определение F_к проводилось с использованием изложенного способа при работе испытуемой машины в двигательном режиме. В качестве испытуемой применялась машина постоянного тока серии П 5-го габарита с глубоким регулированием скорости вращения ослаблением поля.

Номинальные данные испытуемой машины

Напряжение питания — 220 в. Выходная мощность 2,2 квт. Скорость вращения 750/3000 об/мин. Ток возбуждения 1/0,1 а.

Измерение F_к производилось при регулировании скорости вращения от 400 до 3200 *об/мин* и тока якоря от 5 до 20 *а*. Для устранения случайной погрешности при определении точки прямолинейной коммутации устанавливались одновременно четыре препарированных щетки.

В [1] выражение для амплитудного значения добавочного тока коммутации.

$$\mathbf{i}_{\mathtt{gm}} = \mathbf{c} \, \left(\frac{\mathbf{I}_{\mathtt{g}}}{2\mathbf{a}}\right)^{\eta} \cdot \, \mathbf{n}^{\mathtt{x}} \tag{7}$$

получено при работе машины в диапазоне скоростей 600—2000 об/мин. При скорости более 2000 об/мин і_{дт} изменяется по иному закону, а не по выражению [7]. Зависимость же любой сложности может быть представлена полиномом соответствующего порядка. Исходя из этого, был составлен рототабельный план эксперимента второго порядка [4] для двух независимых переменных x₁ и x₂, где

$$x_1 = -\frac{n - 1814}{1000} , \qquad (8)$$

$$\mathbf{x}_2 = \frac{\mathbf{i}_a - 6,25}{2,655} \,, \tag{9}$$

229

п — скорость вращения в об/мин,

i_а — ток параллельной ветви якоря.

Матрица планирования и результаты эксперимента сведены в табл. 1, где y_1 и y_1' н. с. коммутационной реакции якоря для щеток ЭГ-63; y_2 и y_2' — для ЭГ-74, соответственно для плотностей тока через щетку 1,25—5 a/cm^2 — y_1 и y_2 ; 2,5—10 a/cm^2 — y_1' , y_2' .

3.12.2		Constants.							гаолица 1
X ₀	X1	X2	X_{1}^{2}	X2 ²	X ₁ X ₂	y 1	y1'	y_2	y2'
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	$^{+1}_{+1}_{-1}_{+1}_{+2}_{+2}_{-1}_{-2}_{-1}_{-2}_{-1}_{-2}_{-1}_{-2}_{-1}_{-2}_{-1}_{-2}_{-1}_{-2}_{-2}_{-2}_{-2}_{-2}_{-2}_{-2}_{-2$	$-1 \\ -1 \\ +1 \\ +1 \\ 0 \\ -2 \\ +2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	+1 +1 +1 +1 +2 0 0 0 0 0 0 0	$ \begin{array}{c} +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +2 \\ +2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} +1 \\ -1 \\ -1 \\ +1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	7,3 11 18,6 27 9,5 20,8 7,7 32 19 19 19	7,3 11 18,6 27 9,4 20,8 7,7 32 19 19 19	5,9 11 18,5 26,3 4,4 17,2 3,5 25,6 15,9 15,9 15,9 15,9 15,9 15,9 15,9 15,9	$\begin{array}{r} 6,2\\ 10,9\\ 18,7\\ 26,7\\ 4,5\\ 17,5\\ 4,2\\ 26.3\\ 15,9\\ 15$

Интервалы варьирования независимых переменных приведены в табл. 2.

Таблица 2

Тоблино 1

	X ₁	X ₂	
Основной уровень (x1=0)	1814	6.25	
Интервал варьирова- ния	1000	2,65	
Верхний уровень $(x_i = +1)$ Нижний уровень	2814	8,905	
$(x_i = -1)$	814	3,6	

По результатам экспериментов определяются уравнения регрессий вида

 $y = b_0 + b_1 x_1 + b_2 x_2 + b_{11} x_1^2 + b_{22} x_2^2 + b_{12} x_1 x_2,$ (10)

где коэффициенты регрессии:

$$\begin{split} b_{0} &= 0,25(\text{Oy}) - 0,125 \sum_{i=1}^{\kappa} (\text{iiy}), \\ b_{i} &= 0,125(\text{iy}), \\ b_{ii} &= 0,125(\text{iiy}) + 0,03125 \sum_{i=1}^{\kappa} (\text{iiy}) - 0,125(\text{Oy}), \\ b_{ij} &= 0,25(\text{ijy}), \\ (\text{Oy}) &= \sum_{i=1}^{\kappa} y_{u}, \\ (\text{Oy}) &= \sum_{i=1}^{\nu} y_{u}, \\ (\text{iy}) &= \sum_{i=1}^{\nu} x_{iu} \cdot y_{iu}, \\ (\text{iiy}) &= \sum_{i=1}^{\nu} x_{iu}^{2} \cdot y_{u}, \\ (\text{iiy}) &= \sum_{i=1}^{\nu} x_{iu}^{2} \cdot x_{ju} \cdot y_{u}. \end{split}$$

Анализ полученных уравнений производим с помощью множественного коэффициента корреляции

$$R = \sqrt{1 - \frac{S_R}{\Sigma y^2}} , \qquad (11)$$

где $S_R = \Sigma y^2 - \sum_{i=0}^{\kappa} b_i \cdot (iy)$ -- остаточная сумма квадратов, обусловленная неучтенными факторами и ошибкой опыта.

На основе этих результатов можно сделать вывод, что уравнение регрессии достаточно точно описывают результаты эксперимента.

Подставляя в (10) значение переменных x_1 и x_2 из (8), (9) и учитывая (4), имеем:

$$F_{\kappa} = m w_{c\pi} [b_0' + b_1' n + b_2' i_a + b_{11}' n^2 + b_{22} i_a^2 + b_{12} n \cdot i_a] , \qquad (12)$$

что после преобразований дает

$$F_{\kappa} = m w_{c_{\pi}} [b_0'' + b_i'' D_a n + b_2'' i_a + b_{11}'' D_{\kappa}^2 n^2 + b_{22}'' i_a^2 + b_{12}'' D_a n i_a].$$
(13)

Выражение (13) может быть применено для расчета F_к при любой настройке коммутации. Действительно, пусть имеем коммутацию, соответствующую точке Р' рис. 2. Тогда н. с. коммутационной реакции якоря определяется выражением вида

$$\mathbf{F}_{\mathbf{k}'} = \frac{\mathbf{P}' - \mathbf{M}}{\mathbf{P} - \mathbf{M}} \, \mathbf{F}_{\mathbf{k}},\tag{14}$$

где F_к определяется выражением (13), коэффициенты полинома которого представлены в табл. 3.

Из анализа коэффициентов полинома можно сделать следующие выводы.

При неизменном токе якоря н. с. F_{κ} с увеличением скорости вращения возрастает нелинейно. Эта нелинейность обусловливается коэффициентом b_{11} ". Отрицательный знак и наличие коэффициента b_{11} " можно объяснить тем, что с увеличением скорости вращения сопротивление щеточного контакта увеличивается. Действительно, с увеличением скорости вращения время формирования контактной проводимости уменьшается, что ведет к увеличению удельного сопротивления контакта.

Н. с. коммутационной реакции якоря F_{κ} в функции от тока якоря при неизменной скорости вращения имеет незначительную нелинейность, так как коэффициент b_{22}'' на три порядка ниже чем b_2'' . Поэтому коэффициентом b_{22}'' в расчетах н. с. F_{κ} можно пренебречь.

Кроме того, из экспериментальных данных следует, что н. с. F_к может составлять значительную часть н. с. главного полюса. Так, в эксперименте № 4 табл. 1, соответствующем работе машины при F_{гп}=150 aw, н. с. F_к составляет 18% н. с. главного полюса.

T	a	б	Л	И	П	a	3
		-			_		-

Сорт щеток	j	b ₀ "	b1″	b2''	b ₁₁ ″	b ₂₂ ''	b ₁₂ "
	1,25— 5		7,85.10-5	0,298	-0,214.10-8	1,4.10-4	$0,4 \cdot 10^{-5}$
ЭГ-63	2,5 -10	-1,11	7,88.10-5	0,298	$-0,212 \cdot 10^{-8}$	2,8.10-4	0,39 · 10 ⁻⁵
00.74	1,25— 5	-1,7	8,3 ·10 ⁻⁵	0,33	$-0,18 \cdot 10^{-8}$	7 .10-4	$0,22.10^{-5}$
91-74	2,5 -10	-1,6	8,1 ·10 ⁻⁵	0,33	$-0,17 \cdot 10^{-8}$	$1,4.10^{-4}$	0,25·10 ⁻⁵

В целом в результате выполненной работы предлагается аналитический метод определения н. с. коммутационной реакции якоря, который может быть использован при определении F_к машин постоянного тока с глубоким регулированием скорости вращения при любой настройке коммутации.

.ЛИТЕРАТУРА

1. Э. Г. Чеботков, Ю. П. Галишников. Коммутационная реакция якоря в машинах постоянного тока серии П с регулируемой скоростью вращения.

Известия ТПИ, т. 172, 1967. 2. В. А. Лифанов, А. Г. Дорм. Исследование коммутационной реакции якоря в машинах постоянного тока с помощью датчиков Холла. «Электромехани-

ка», 1961, № 3. 3. М. Ф. Карасевидр. Оптимальная коммутация машин постоянного то-ка. Изд-во «Транспорт», 1967. 4. В. В. Налимов, Н. А. Чернова. Статистические методы планирова

ния экстремальных экспериментов. Изд-во «Наука», 1965.