УДК 546.161,541.127/4

ФТОРИДНЫЙ МЕТОД ПЕРЕРАБОТКИ РУТИЛОВОГО КОНЦЕНТРАТА

В.А. Карелин, О.В. Каменева

Северская государственная технологическая академия E-mail: vladimir@seversk.tomsknet.ru

Выполнено термодинамическое исследование процесса фторирования рутилового концентрата элементным фтором с использованием компьютерной программы "ASTRA". Изучены кинетические особенности процесса и проведена их математическая обработка. Обсуждены условия проведения процесса в промышленном оборудовании.

В настоящее время существуют две схемы переработки титансодержащих концентратов: сернокислотная и хлоридная. При использовании сернокислотной технологии происходит существенное загрязнение окружающей среды, а получаемый диоксид титана имеет высокую стоимость. Ежегодно зарубежными фирмами в окружающую среду сбрасываются сотни тысяч тонн сульфатсодержащих отходов (в виде CaSO₄). Хлоридный способ производства диоксида титана считается более благоприятным в экологическом отношении. В тоже время и в этом случае, образуются огромные количества газовых, жидких и твердых хлоридных производственных сбросов, а общее извлечение титана в очищенный хлорид не превышает 89 мас. %. При мировом производстве пигментного диоксида титана 2750 тыс. т/год будет образовываться 1467 тыс. т/год или 4890 т/сут вредных хлоридных производственных твердых отходов (при условии перевода всех заводов на хлоридную технологию) [1, 2].

Все это является предпосылкой для разработки и создания более прогрессивной и перспективной фторидной технологии по переработке титансодержащих концентратов. Одним из наиболее распространенных титансодержащих концентратов, применяемых в технологии, является рутиловый. В настоящей работе в качестве сырьевого источника предлагается использовать рутиловый концентрат Тарского месторождения (Омская область), состав которого приведен в табл. 1 [3].

Таблица 1. Химический состав рутилового концентрата Тарского месторождения (Омская область)

Вещество	Содержание, мас. %		
TiO ₂	93.2		
SiO ₂	1,8		
FeO	1,5		
Fe ₂ O ₃	1,2		
Al ₂ O ₃	1,0		
MnO	0,6		
CaO	0,4		
MgO	0,2		
V ₂ O ₅	0,1		

Разрабатываемая нами фторидная технология получения титана в виде высокочистого металлического порошка включает следующие стадии: фторирование рутиловых концентратов, выделение образовавшегося TiF₄ из газового потока и электролитическое восстановление титана во фторидном расплаве. Основное преимущество этой технологии состоит в том, что элементный фтор, образующийся в процессе получения титана, вновь возвращается в начало процесса на фторирование рутила. Фториды нелетучих примесей, входящих в состав рутилового концентрата, используют в металлургической промышленности в качестве раскислителей стали. Летучие фториды, содержание которых не превышает ~2 % от основного компонента, подлежат переработке. Поэтому оценочное количество образующихся по предлагаемой технологии отходов будет значительно меньшим, чем по хлоридной и сульфатной технологиям.

В связи с этим, в первую очередь были изучены физико-химические аспекты процесса фторирования диоксида титана и соединений, входящих в состав рутилового концентрата, элементным фтором (F₂).

Для термодинамического описания процесса фторирования диоксида титана выбраны следующие реакции [3]:

$TiO_2 + 2F_2 \rightarrow TiF_4 \uparrow + O_2,$	(1)
$SiO_2+2F_2 \rightarrow SiF_4\uparrow+O_2,$	(2)
$MgO+F_2 \rightarrow MgF_2+0, 5O_2;$	(3)
$MnO+F_2 \rightarrow MnF_2+0,5O_2;$	(4)
$Al_2O_3+3F_2 \rightarrow 2AlF_3 \downarrow +1,5O_2,$	(5)
$FeO+1,5F_2 \rightarrow FeF_3 \downarrow + 0,5O_2,$	(6)
$Fe_2O_3+3F_2 \rightarrow 2FeF_3+1, 5O_2;$	(7)
$CaO+F_2 \rightarrow CaF_2 \downarrow +0,5O_2,$	(8)
$V_2O_5 + 5F_2 = 2VF_5 \uparrow + 2,5O_2$.	(9)

В результате фторирования образуются: газовая фаза, содержащая TiF_4 , SiF_4 , VF_5 , твердый остаток – FeF₃, AlF_3 , MnF_2 , CaF_2 , MgF_2 и непрореагировавшие оксиды.

Зависимость изменения логарифма константы равновесия этих реакций от температуры $\lg K_p = f(T)$ представлена на рис. 1.

Термодинамическое исследование процесса фторирования TiO_2 элементным фтором показывает, что образование тетрафторида титана (TiF_4) протекает во всем рассматриваемом диапазоне температур (от 298 до 1800 К). Фторирование оксидов примесных элементов также происходит во всем рассматриваемом температурном диапазоне.

Из рис. 1 видно, что рассматриваемые процессы фторирования с термодинамической точки зрения не имеют ограничений, являются необратимыми и

протекают с образованием целевых продуктов в виде фторидов.

Рис. 1. Зависимость изменения IgK_p от температуры реакций фторирования компонентов рутилового концентрата

Выполнены также исследования равновесного состава изолированной термодинамической системы с использованием пакета программ термодинамических расчетов «ASTRA», разработанных в MBTУ им. Н.Э. Баумана [4]. Эти исследования проводили для следующего состава рутилового концентрата, мас. %: 48,43 TiO₂; 0,92 FeO; 1,03 SiO₂; 0,56 Al₂O₃; 0,15 Cr₂O₃; 0,12 CaO; 0,06 V₂O₅, что составляет 51,27 % от исходной смеси. Остальное – стехиометрически необходимое для фторирования количество фтора и его избыток.

При проведении исследований в указанном температурном диапазоне возможно существование следующих продуктов реакций: O₂, CaF_{2тв}, TiF_{4тв}, TiO_{2тв}, SiF₄, CrF₆, TiF₄, SiOF₂, AlF_{3тв}, V₂O_{5тв}, FeF_{3тв}, FeF₃, AlF₃, V₄O₁₀, F₂, F, F₂O, FO, Fe₂F₆, Al₂F₆, TiF₃, FeF₂, Fe_2O_3 . В связи с большим количеством образующихся в данной системе химических соединений, при анализе были отброшены вещества, концентрация которых в исследуемой области температур была менее 0,0001 моль/кг, что не превышает 0,01 % от концентрации целевых продуктов TiF₄ и O₂.

В результате выполненного исследования установлено, что основными газообразными продуктами процесса фторирования являются TiF₄ и O₂.

На рис. 2 представлена зависимость изменения массовой концентрации TiF_4 (*C*, мас. %) в продуктах реакции от температуры (*T*, K) процесса фторирования.

Рис. 2. Зависимость содержания TiF₄ от температуры для различных соотношений реагентов: 1) стехиометрия по F₂; 2) избыток 10 % по F₂; 3) избыток 50 % по F₂; 4) недостаток 10 % по F₂; 5) недостаток 50 % по F₂

Из рис. 2 видно, что более высокое содержание целевого продукта (TiF₄) наблюдается при стехиометрическом соотношении фаз, однако в исследованиях показано, что в этом случае в системе будет находиться некоторое количество непрореагировавшего TiO₂. В связи с этим оптимальные условия проведения процесса фторирования — 10 %-ный избыток F₂.

В табл. 2 приведен равновесный состав продуктов процесса фторирования рутилового концентрата при 10 %-ном избытке фтора.

Таблица 2. Содержание продуктов реакции фторирования, мас. % (при содержании исходных веществ 48,43 мас. % TiO₂, 48,75 мас. % F₂, остальное примеси) P=0,1 МПа. Избыток фтора 10 % от стехиометрии*

Т, К	ТіF _{4 (тв)}	TiF _{4 (r)}	V ₂ O _{5 (tb)}	F _{2 (r)}
473	72	0	5,34·10 ⁻²	4,4
673	72	4,59·10 ⁻²	5,34·10 ⁻²	4,4
873	0	71,6	5,34·10 ⁻²	4,4
1073	0	71,6	5,32·10 ⁻²	4,3
1273	0	71,6	5,29·10 ⁻²	3,7

*Содержание О_{2(г)}, CaF_{2(тв)}, SiF_{4(г)}, AlF_{3(тв)} и FeF_{3(тв)} в продуктах реакции практически не изменяется и составляет 20, 1,3·10⁻¹, 1,7, 8,8·10⁻¹ и 1,38 мас. % соответственно

Рис 3. Схема экспериментальной установки фторирования основного компонента рутилового концентрата – TiO₂: 1) реактор фторирования; 2) индукционная катушка; 3) регистрирующий прибор; 4) электромагнитная катушка; 5) пружина из Мо; 6) измерительное устройство; 7) молибденовая нить; 8) чашечка из никелевой фольги; 9, 10) система регулирования и регистрации температуры; 11, 12) система регулирования расхода газа; 13) узел подачи фтора и аргона; 14, 15) нагреватели фтора и азота; 16) узел конденсации летучих фторидов; 17) линия очистки отходящих газов; 18) обогреватель реактора 1

Из полученных результатов следует, что заметное образование газообразного тетрафторида титана начинается при температуре выше 400 К и его количество доминирует во всем температурном диапазоне. При фторировании образуются также нелетучие фториды – CaF₂, AlF₃ и FeF₃.

Основной компонент рутилового концентрата – TiO_2 фторируется образованием летучего фторида – TiF_4 .

Для подтверждения термодинамических расчётов и изучения особенностей процесса фторирования основного компонента рутилового концентрата — TiO₂ выполнены кинетические исследования на экспериментальной установке, схема которой представлена на рис. 3.

Основной элемент этой установки — вертикальный реактор фторирования — 1, изготовленный из коррозионно-стойкого во фторидных средах сплава ЭИ-943. Для запуска процесса фторирования предназначен электрообогреватель — 18.

В крышку реактора впаяна латунная трубка, внутри которой находится измерительный элемент – отожженная молибденовая пружина, одним концом закрепленная на заглушке, другим – соединенная со стальным плунжером индукционной катушки – 2 измерительного и регистрирующего прибора – 3. К нижнему концу плунжера на подвесе из молибденовой нити прикреплена чашечка из никелевой фольги – 8. Перед реактором – 1 расположен узел подачи фтора и азота – 13. Для регулирования и регистрации температуры предназначен датчик — 9 и система — 10. Расходы газообразных фтора и азота регулируют системами — 11, 12. На выходе из реактора расположен узел конденсации летучих фторидов — 16. Санитарную очистку отходящих газов от фторсодержащих примесей проводят на линии — 17.

Для уменьшения влияния тепла реакции на изотермические условия в схеме опытной установки предусмотрено разбавление фтора азотом. Предварительный подогрев реакционной газовой смеси осуществляют в змеевике, расположенном на наружной поверхности реактора. Использование массивного металлического реактора и примененного метода подвода реакционной газовой смеси позволили свести до минимума температурный градиент: навеска – реакционная газовая смесь.

Кинетику процесса фторирования TiO_2 элементным фтором изучали на порошках с гранулометрическим составом от $2 \cdot 10^{-6}$ до $2 \cdot 10^{-5}$ м с площадью удельной поверхности 3,5 м²/г.

Исследования выполняли на образцах TiO₂ массой 280 мг с толщиной слоя навески до 4 мм в температурном диапазоне 580...830 °С. В ходе проведения процесса фторирования при контролируемых температуре и парциальном давлении фтора непрерывно фиксировали массу образца. Фторирование проводили техническим фтором, который очищали от HF сорбцией на таблетированном NaF при 370...380 К. Для отвода выделяющегося при фторировании тепла и создания изотермических условий фтор разбавляли инертным газом – азотом. Эта реакция, протекающая на поверхности соприкосновения твердой и газообразной фаз, складывается из следующих основных стадий:

- транспорта реагирующего газа к поверхности твердого;
- 2. сорбции газа на поверхности твердого;
- химической реакции сорбированного газа с твердым;
- десорбции газообразного TiF₄ с поверхности твердого;
- 5. транспорта десорбированного TiF₄.

Скорость взаимодействия TiO_2 со фтором определяется наиболее медленным из этих процессов. Процессы 1 и 5 – диффузионного характера; для очень тонкого слоя материала роль их сравнительно невелика, поэтому скорость фторирования в основном определяется процессами 2, 3 и 4. В свою очередь, скорость всех этих процессов обусловливается температурой; скорость процесса 2 зависит как от величины поверхности твердого вещества, так и от парциального давления фтора в системе. Таким образом, скорость взаимодействия TiO_2 с фтором определяется температурой, парциальным давлением фтора и физико-химическими характеристиками исходного вещества.

Качественными наблюдениями установлено, что при температуре 580 К и ниже процесс фторирования протекает медленно, вероятно, с образованием твердого оксифторида или газообразного тетрафторида титана. Первое соединение образует пленку на поверхности частиц диоксида титана, которая практически останавливает процесс. С заметной скоростью реакция протекает лишь при температуре 630 К, а при 830 К скорость реакции постепенно возрастает, и улетучивание титана в виде тетрафторида заканчивается в течение 12...14 мин.

Кинетические зависимости фторирования диоксида титана фтором имеют S-образную форму, характерную для гетерогенных процессов «газ-твердое» [5]. На зависимости скорости от времени можно выделить три участка: 1 – индукционный период, характеризующийся низкой скоростью и связанный с превращением исходного диоксида титана в промежуточные оксифториды. В течение индукционного периода происходит формирование поверхности раздела фаз, состоящей из промежуточного соединения (оксифторида титана). Атомы фтора диффундируют внутрь исходного твердого реагента, образуя зародыши промежуточных соединений. На стадии 2 - по мере возникновения новых зародышей скорость возрастает, достигая максимального значения, и дальнейший ход кинетических кривых определяется продвижением поверхности раздела фаз. На стадии 3 – сокращение площади поверхности за счет расхода твердого реагента приводит к уменьшению скорости превращения [6].

Зависимости скорости от времени фторирования при 580 К характеризуется большим индукционным периодом. Значительное увеличение скорости фторирования в диапазоне 780...830 К можно объяснить тем, что реакция переходит в режим горения. Необходимо отметить, что реакция фторирования протекают со значительным выделением тепла, поэтому довольно трудно выдержать изотермические условия процесса.

Математическая обработка количественных данных по взаимодействию диоксида титана с фтором была проведена по трем уравнениям: Гистлинга, «сокращающейся» сферы и Яндера [3].

Уравнение Гистлинга используется для описания скорости процесса во внешнедиффузионной области:

$$1 - (1 - \alpha)^{2/3} = k\tau$$

где α – степень превращения реагирующего вещества, k – константа скорости, τ – время.

Уравнение «сокращающейся» сферы применимо для описания кинетической области:

$$1 - (1 - \alpha)^{1/3} = k\tau$$

а для описания скорости реакций, в ходе которых образуются достаточно плотные пленки продуктов, замедляющие поступление газообразного реагента (элементного фтора) к реакционной поверхности реагирования (диффузионная область), используют уравнение Яндера

$(1-(1-\alpha)^{1/3})^2 = k\tau.$

Применимость представленных выше уравнений для описания механизма фторирования определялась по максимальному коэффициенту корреляции зависимостей $k=f(\alpha,t)$ для каждого исследуемого формального кинетического уравнения.

На рис. 4–6 приведены соответствующие зависимости (в скобках указаны температуры проведения процесса фторирования).

Рис. 4. Зависимость $1-(1-\alpha)^{2/3}=f(\tau)$ для уравнения Гистлинга

Из представленных данных видно, что экспериментальные данные наиболее точно (коэффициент корреляции 0,96...0,99) приближаются к функции, описываемой уравнением Гистлинга. Это уравнение выведено из предположения, что скорость процесса определяется диффузией молекул фторирующего реагента и возгоняющихся продуктов фторирования: TiF₄, SiF₄, O₂ и др.) в пространство между зернами, которое полагается бесконечным [6].

Рис. 5. Зависимость 1-(1-α)^{1/3}=f(lnτ) для уравнения «сокращающейся» сферы

Рис. 6. Зависимость (1-(1- α)^{1/3})²=f(In τ) для уравнения Яндера

Влияние температуры на скорость фторирования диоксида титана, рассчитанное по уравнению Гистлинга, приведено на рис. 7.

Рис. 7. Зависимость Ink от обратного значения абсолютной температуры

Для определения энергии активации процесса (E_a) проведена линеаризация зависимости, представленной на рис. 7.

Как видно из этих данных, прямо пропорциональная зависимость наблюдается на протяжении всего температурного диапазона процесса фторирования за исключением начальной и конечной стадий. Отклонение от прямолинейной зависимости в начале процесса обусловлено заполнением системы инертным газом — азотом, который необходим для удаления воздуха из системы; в течение последней стадии процесса фторируется не TiO₂, а образовавшийся промежуточный оксифторид титана.

По наклону прямой в аррениусовских координатах определено значение кажущейся энергии активации (24600 Дж/моль) и предэкспоненциальный множитель (k_0 =3,063 мин⁻¹) процесса фторирования диоксида титана элементным фтором.

Таким образом, кинетическое уравнение фторирования TiO₂ имеет вид:

$$(1-(1-\alpha)^{1/3})^2=3,063 \cdot e^{\frac{24000\pm100}{RT}}\varepsilon.$$

24600±100

Необходимо отметить, что все описанные выше закономерности относятся к случаю использования большого избытка фтора. На практике обычно используют минимальный избыток фтора. При образовании из TiO_2 промежуточных фторидов скорость процесса достаточно велика, и фтор можно использовать практически нацело. При получении же из промежуточных фторидов тетрафторида титана можно добиться количественного использования фторалишь при очень длительном соприкосновении твердой и газовой фаз; это возможно при противоточном процессе, когда свежий фтор подается на обработку частично профторированного продукта, а отходящие газы обрабатывают свежий диоксид титана.

В статических условиях (или при недостаточной интенсивности перемешивания) и при высоких концентрациях фтора может происходить значительное перегревание твердого материала. Так как промежуточный оксифторид титана и примеси, присутствующие в исходном рутиловом концентрате, обладают способностью спекаться, плохое перемешивание твердой и газовой фаз может привести к оплавлению материала и к еще большему ухудшению условий контакта фаз. Поэтому выгоднее проводить процесс образования тетрафторида титана в газовой взвеси. В этих условиях разогрев частицы весьма незначителен, т.к. ее температура практически равна температуре газа [7].

В результате исследования процесса:

- изучены термодинамические особенности процесса фторирования рутилового концентрата элементным фтором; показано, что с термодинамической точки зрения процесс не имеет ограничений;
- определены кинетические закономерности процесса фторирования диоксида титана элементным фтором в температурном интервале 580...830 К, установлено, что реакция ограничена диффузионными факторами – энергия активации составляет 24600 Дж/моль;
- отмечено, что фторирование целесообразно проводить в газовой взвеси, когда температура частицы практически равна температуре газа и ее перегревания не происходит.

СПИСОК ЛИТЕРАТУРЫ

- Коровин С.С., Зимина Г.В., Резник А.М. Редкие и рассеянные элементы. Химия и технология. Кн. 2: – М.: МИСИС, 1996. – 382 с.
- Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. – М.: Металлургия, 1991. – 431 с.
- Карелин В.А., Карелин А.И. Фторидная технология переработки концентратов редких металлов. – Томск: Изд-во НТЛ, 2004. – 184 с.
- Синярев Г.Б., Ватолин Н.А., Трусов Б.Г., Моисеев Г.К. Применение ЭВМ для термодинамических расчетов металлургических процессов. М.: Наука, 1986. 261 с.
- Щербаков В.И., Зуев В.А., Парфенов А.В. Кинетика и механизм фторирования соединений урана, плутония и нептуния фтором и галогенфторидами. М.: Энергоатомиздат, 1985. 127 с.
- Левеншпиль О. Инженерное оформление химических процессов. – М.: Химия, 1969. – 622 с.
- Копырин А.А., Карелин А.И., Карелин В.А. Технология переработки ядерного топлива и его радиохимическая переработка. – М.: Атомэнергоиздат, 2006. – 561 с.

УДК 546.824-31,661.878

ФТОРОАММОНИЙНЫЙ МЕТОД ПОЛУЧЕНИЯ ДИОКСИДА ТИТАНА

А.Н. Дьяченко

Томский политехнический университет E-mail: diachenko@phtd.tpu.ru

Исследован новый метод получения диоксида титана из ильменита. Сущность метода заключается в разложении ильменита с помощью фторида аммония с последующим сублимационным отделением тетрафторида титана и его гидролизом до гидроксида и диоксида титана. Предложена аппаратурная схема технологического участка.

Важнейший продукт титановой промышленности — диоксид титана, на который перерабатывается большая часть титанового сырья. Главный потребитель диоксида титана — лакокрасочная промышленность. К пигментному TiO₂ предъявляются высокие требования по дисперсности и содержанию примесей железа, хрома меди, марганца, которые уже при содержании 0,01 % сообщают белому диоксиду титана различную окраску.

В настоящее время в промышленности применяется сернокислотный метод разложения ильменита [1]. Метод сложен, требует многих операций; главные из них: вскрытие концентрата, очистка сульфатных растворов, гидролиз растворов, прокаливание гидроксида до диоксида. В результате получается диоксид титана, требующий дальнейшей очистки от примесей.

В качестве альтернативной технологии переработки ильменита рассмотрен фтороаммонийный способ получения диоксида титана. Известно, что ильменит реагирует с фторидами аммония с образованием нестехиометрических соединений фторотитаната и фтороферрата аммония [2].

Фтороаммонийный метод позволяет в одну стадию выделить из ильменита тетрафторид титана и перевести его в форму диоксида титана. Метод сочетает в себе операции по разложению ильменита с одновременной очисткой от примесей хрома и тория. Метод не требует использования агрессивных реагентов и не приводит к образованию жидких или каких-либо других отходов. Предлагаемый способ позволяет получать как рутильную, так и анатазную форму диоксида титана. Экспериментальная часть работы проводилась на ильменитовом концентрате Туганского горно-обогатительного комбината «Ильменит» [3]. Представленная проба ильменитового концентрата, кроме большого количества лейкоксена, содержала примеси хрома – до 1,5 % и фосфатов – до 0,1 %. Наличие этих примесей характерно для большинства ильменитовых концентратов и значительно затрудняет использование диоксида титана, полученного по классической технологии, в качестве пигмента. Одним из преимуществ предлагаемой технологии является независимость состава конечного титанового продукта от качества исходного ильменита.

Сущность предлагаемого метода заключается в разложении ильменита на дифторид железа и тетрафторид титана в расплаве фторида аммония.

Расплав фторида аммония является одним из лучших фторирующих агентов, при этом температура расплава всего 140 °C. В тоже время твёрдый фторид аммония при 20 °C является достаточно инертным кристаллическим порошком и, в отличие от фтора и фтороводорода, не представляет существенной экологической опасности. Важным, с точки зрения экономики процесса, является возможность полной регенерации фторида аммония и возврата его в цикл, что практически исключает затраты на этот реагент [4]. В настоящее время опубликованы работы по изучению процесса разложения фторидом аммония цирконовых [5, 6] и кварц-топазовых руд [7].

Технологически задача решается тем, что смешивают ильменит и фторид аммония в стехиометрической пропорции 1:1 и смесь нагревают до 300 °C.