Том 212

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ АВТОНОМНОГО ИСТОЧНИКА ИМПУЛЬСНОЙ МОЩНОСТИ С ИНДУКТИВНО-ЕМКОСТНЫМ ПРЕОБРАЗОВАТЕЛЕМ

Ф. П. Зверев, Г. А. Сипайлов, А. Б. Цукублин

(Представлена научным семинаром кафедр электрических машин и общей электротехники)

Импульсное использование электрической энергии в современной технике имеет достаточно большое применение. Основной отличительной эсобенностью импульсных систем является накапливание электрической или электромапнитной энергии в накопителе в течение сравнительно длительного времени и быстрая отдача ее в нагрузку.

Импульсные системы небольшой мощности ($W_{3an}=10^2\div10^3$ дж), как правило, выполняются автономными, в которых первичным источником энергии являются низковольтная химическая батарея ограниченной мощности или вал отбора механической мощности, что обусловливает необходимость создания промежуточных преобразующих устройств для заряда накопителя. При этом в автономных системах весьма важным является обеспечение наивысшего к. п. д. процесса заряда накопителя и минимального веса и габаритов всей системы в целом.

K числу таких импульсных систем относится автономный источник импульсной мощности, выполненный по схеме синхронный генератор — выпрямитель — накопительный конденсатор ($C\Gamma$ —B—CH) [1].

Известно [2], что минимальным затратам энерпии и наивысшему к.п.д. заряда соответствует линейное возрастание напряжения на конденсаторе в процессе заряда, т. е. заряд неизменным током.

Одним из способов реализации такого режима варяда накопительного конденсатора является применение индуктивно-емкостного преобразователя (ИЕП) в качестве промежуточного звена между генератором переменного тока и выпрямителем, выполняющего роль преобразователя источника неизменного напряжения в источник неизменного тока [3].

В настоящей статье приводятся некоторые результаты экспериментального исследования автономного источника импульсной мощности (АИИМ) с индуктивно-емкостным преобразователем, схема которого приведена на рис. 1.

В качестве источника переменного тока был использован маломощный синхронный генератор с электромапнитным возбуждением и регулятором напряжения.

ИЕП выполнен по трехфазной Т-образной схеме с взаимоиндуктивной связью катушек в плечах и настроен в резонанс на частоту синхронного генератора.

Ниже приведены окновные данные экспериментальной уктановка АИИМ:

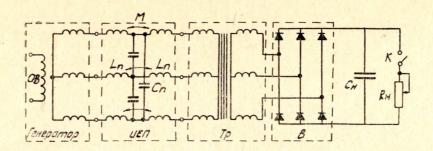


Рис. 1. Принципиальная схема автономного источника импульсной мощности с индуктивно-емкостным преобразователем

Генератор Мошность

P = 500 Ba $N_{\pi} = 40 \text{ B}$ Напряжение t_г—500 гц Частота

 $\pi = 15000$ об/мин Скорость вращения

Индуктивно-емкостной преобразователь

 $L_{\rm h}=0.9$ MPH Индуктивность дросселей $C_{\rm H}=70~{\rm MK}$ Емкость

Коэффициент связи катушек $K_c = 1.0$ Добротность катушек Q = 15

Согласующий трансформатор

Тип трансформатора — трехфазный стержневой Коэффициент трансформации $K_{\rm T}=25$ Соединение обмоток XX

Накопительный конденсатор

 $C_{\rm H} = 240$ мкф Нормальное напряжение $U_{cH} = 3000 B$ $t_3 = 0.2 \div 3.0$ сек Время заряда Время разряда $t_{\rm p} = 0.01 \, {\rm cek}$

Режим работы АИИМ — циклический — «Заряд-разряд».

Циклический режим работы АИИМ и изменение напряжений и токов в течение цикла в широких пределах не позволили использовать в данной схеме стрелочные приборы ввиду большой их инерционности. Невозможной оказалась и регистрация указанных величин путем непосредственной записи осциллограмм и последующей их расшифровки, из-за сравнительно высокой частоты синхроиного генератора и низкой частоты следования разрядных импульсов ($f'_{\text{имп}}^{\text{мин}} = 0,3$ гц). Поэтому была принята следующая методика исследования энергетических показателей ЛИИМ:

- 1. Проводился гармонический анализ токов и напряжений с записью осциллограмм изменения в процессе заряда всех наиболее существенных гармонических составляющих. Калибровка осциллограмм эталонными напряжением и током позволила определить значения основной гармонической, относительно которой определялись амплитуды высших гармонических составляющих.
- 2. По известной амплитуде первой гармонической и относительным значениям составляющих спектра определялись эффективные значения измеряемых величин тока и напряжения в соответствии с выражениями (1) H (2)

$$I_{\vartheta \Phi} = \frac{I_{1m}}{\sqrt{2}} \sqrt{1 + \sum_{k=3}^{n} \left(\frac{I_{km}}{I_{1m}}\right)^2}$$
 (1)

$$U_{9\phi} = \frac{U_{1m}}{\sqrt{2}} \sqrt{1 + \sum_{k=3}^{n} \left(\frac{U_{km}}{U_{1m}}\right)^{2}}.$$
 (2)

3. Мгновенное значение активной мощности определялось путем записи осциллограмм с помощью измерительных шлейфов мощности по

методу двух ваттметров.

Пользуясь описанным методом, были экспериментально исследованы соотношения между токами, напряжениями и мощностями во всех элементах системы и построены рабочие характеристики АИИМ (рис. $2\div 5$).

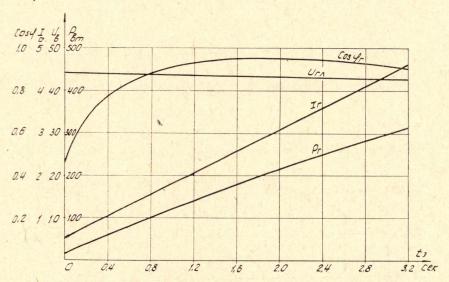


Рис. 2. Рабочие характеристики генератора АИИМ при работе на емкость

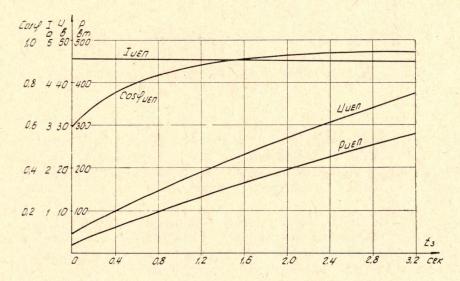


Рис. 3. Рабочие характеристики индуктивно-емкостного преобразователя АИИМ при работе на емкость

Анализ осциллограмм и рабочих характеристик АИИМ показывает, что

1) применение ИЕП в качестве промежуточного звена существенно повышает к.п.д. процесса заряда; среднее значение к.п.д. эксперимен-

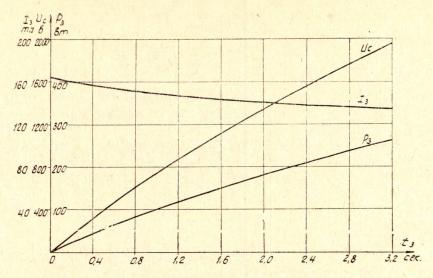


Рис. 4. Параметры нагрузки при работе АИИМ на емкость

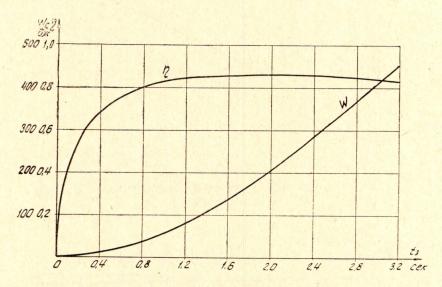


Рис. 5. К. п. д. системы и количества запасаемой накопителем энергии

тальной установки АИИМ при времени заряда $t_3=3$ сек составило $\eta_{\rm cp}{=}0.74$, что значительно превышает к.п.д. зарядного устройства с ограничивающими индуктивностями ($\eta_{\rm cp}{\cong}0.6$) или активным сопротивлением в цепи зарядного контура (после выпрямителя) ($\eta_{\rm cp}{\leqslant}0.5$) [1, 2];

- 2) настройка ИЕП в резонанс на частоту питающего напряжения обеспечивает практически неизменное значение тока на выходе ИЕП (рис. 3), относительную стабильность тока заряда и, соответственно, практически линейное возрастание напряжения на накопительной емкости в процессе заряда (рис. 4);
- 3) высокие значения коэффициента мощности генератора (рис. 2) в процессе заряда (соѕфгер = 0,86) показывают, что при правильной настройке ИЕП практически не потребляет реактивной мощности;
- 4) применение ИЕП обусловливает отсутствие провалов выходного напряжения генератора, неизбежных при включении синхронного генератора на разряженную емкость, как непосредственно через выпрями-

тель [1], так и через ограничивающие индуктивности или сопротивления; это обстоятельство является весьма существенным для автономных импульсных систем, в которых генератор, наряду с работой на емкостной накопитель, может также быть использован для питания других потребителей, требующих стабильности напряжения.

Результаты гармонического анализа приведены в таблице.

Таблица Содержание высших гармонических в кривых напряжений и токов в процессе заряда накопителя

	K	Время заряда із сек								
	№ гармоник	0,2	0,4	0,8	1,2	1,6	2,0	2,4	2,8	3,2
	LPB	Содержание высших гармонических в %								
Линейное напряжение генератора Фазный ток генератора Фазное напряжение ИЕП Фазный ток ИЕП Фазное напряжение трансформатора Фазный ток трансформатора	5757575757575757	3,0 1,6 30,0 12,0 18,0 4,0 4,5 1,6 9,0 5,5 4,5	4,8 2,4 32,0 9,0 23,5 3,5 6,5 2,0 14,0 9,5 6,8 0,5	7,1 3,2 33,0 6,0 24,0 2,5 10,5 2,7 20,0 12,5 10,4 2,0	8,4 3,2 29,5 5,0 19,5 2,5 13,5 3,2 18,0 8,0 13,5 3,5	9,0 3,1 25,8 4,7 16,5 3,1 15,6 3,7 14,0 5,7 15,6 4,5	9,2 3,1 22,5 4,5 14,7 3,6 17,0 4,0 12,0 4,0 16,7 5,2	9,2 3,0 19,0 4,3 13,5 3,8 17,6 4,5 11,0 3,2 17,5 6,0	9,2 2,9 17,0 4,0 12,5 4,0 17,6 5,1 10,0 2,5 18,0 6,6	9,2 2,8 15,5 4,0 12,1 4,0 17,5 5,3 9,5 2,4 18,2 7,0

Гармонический анализ токов и напряжений на выходе генератора, ИЕП и согласующего трансформатора показывает, что

- 1) формы кривых токов и напряжений деформируются в процессе заряда, причем в кривых отсутствуют гармонические, кратные числу фаз системы, а также четные гармонические;
- 2) наиболее существенными из высших гармонических во всех случаях являются 5-я и 7-я, изменение которых за время заряда показано в таблице:
- 3) содержание высших гармонических в кривой выходного напряжения генератора в течение всего времени заряда не превышает 10%, что еще раз свидетельствует о возможности использования генератора АИИМ для питания других потребителей;
- 4) формы кривых фазных токов всех элементов АИИМ, а также фазных напряжений ИЕП и согласующего трансформатора значительно искажены (до 20÷30%), что должно быть учтено при проектированин элементов автономного источника импульсной мощности с индуктивно-емкостным преобразователем.

ЛИТЕРАТУРА

1. А. И. Бертинов и др. Энергетика процесса заряда конденсатора от

генератора переменного тока через выпрямитель. «Электричество», № 8, 1967.
2. P. M. Mostov, I. L. Neuringer, and D. S. Rigney. "Optimum Capacitor charging efficiency for space sustems". Proceedings et the 9, R. E. Mau, 1961. 3. Д. И. Милях и др. Индуктивно-емкостные преобразователи источников

напряжения в источники тока. Изд-во «Наукова думка», Киев, 1964.