турная схема контура ФАПЧВ с учетом всех его нелинейностей.

- Разработан специальный SIMULINK-блок, моделирующий работу многозначной статической нелинейности, которая входит в состав модели импульсного частотно-фазового дискриминатора.
- Проведено моделирование электропривода с фазовой синхронизацией в переходных режимах работы при различных начальных условиях,

СПИСОК ЛИТЕРАТУРЫ

- Трахтенберг Р.М. Импульсные астатические системы электропривода с дискретным управлением. – М.: Энергоиздат, 1982. – 168 с.
- Бубнов А.В. Вопросы теории и проектирования прецизионных синхронно-синфазных электроприводов постоянного тока. – Омск: Редакция журнала «Омский научный вестник», 2005. – 190 с.

получены временные зависимости и фазовые портреты работы электропривода, что позволяет определить время регулирования и величину перерегулирования в контуре ФАПЧВ, а также наглядно демонстрирует форму и характер переходного процесса.

Полученные результаты могут быть использованы при проектировании прецизионных электроприводов с фазовой синхронизацией.

- Бубнов А.В. Математическая модель логического устройства сравнения для электропривода с фазовой синхронизацией // Электричество. – 2005. – № 5. – С. 27–31.
- 4. Катрич П.А., Игнатов А.С. Блок «Многозначная нелинейность». – М.: ВНТИЦ, 2005. – № 50200501804.
- Бубнов А.В., Катрич П.А. Вопросы выбора регулятора для следящего электропривода с фазовой синхронизацией // Омский научный вестник. – 2005. – № 2. – С. 128–131.

УДК 519.688

ИССЛЕДОВАНИЕ ЧИСЛЕННОГО АЛГОРИТМА ОПЕРАЦИИ «СЖАТИЕ-РАСТЯЖЕНИЕ», ПРИМЕНЯЕМОЙ ДЛЯ ВОССТАНОВЛЕНИЯ БИОИНДИКАЦИОННЫХ ДАННЫХ

Ю.В. Волков, В.А. Тартаковский*, В.Н. Попов, И.А. Ботыгин

Томский политехнический университет E-mail: yvvolkov@tpu.ru *Институт мониторинга климатических и экологических систем СО РАН, г. Томск E-mail: tv@iom.tomsknet.ru

Рассматривается способ восстановления фазы сигнала, основанный на численном алгоритме, реализующем операцию «сжатиерастяжение», используемый при выделении биоиндикационной информации. Приведены результаты численного исследования предлагаемого алгоритма.

Введение

Биоиндикационное исследование часто основывается на анализе слоистых или кольцевых структур биообъектов [1]. Информация, содержащаяся в картине чередующихся полос разной интенсивности, может быть использована для восстановления связи между биологическим объектом и окружающей средой. Восстановление закодированной подобным образом информации предлагается осуществлять путем вычисления фазы сигнала, представляемого в виде колебательного процесса [2]. В результате реализации данного подхода получают информацию об особенностях изменений локальной структуры индикатора. Точность восстановления информации зависит от уровня и вида составляющих шума, содержащихся в смеси с анализируемым сигналом. Применяя процедуры фильтрации, как во временной, так и в частотной областях добиваются требуемой точности вычисления фазы. В то же время, для сигналов с широким спектром частот ошибка восстановления фазы связана с отсутствием аналитичности.

Введение аналитического сигнала (AC), позволяет однозначным образом определить амплитуду, фазу и частоту любой вещественной функции времени [3-6]. Наиболее важное свойство аналитического сигнала – это причинность его спектра. Спектр АС располагается по одну сторону от начала координат оси частот [7], т.е. АС, соответствующий действительной функции, получается путем обнуления одной половины спектра частот. Эта операция непротиворечива только в том случае, когда сигнал сформирован как двухполосный, как сумма сопряженных комплексных функций с непересекающимися спектральными полосами. Эти комплексные функции будут по определению сопряженными аналитическими сигналами. Качественный признак наличия двухполосности - это большое число мало меняющихся периодов у колебания, но при наличии шума трудно сделать вывод о выполнении данного требования.

Решение данной проблемы возможно с использованием операции «сжатия-растяжения» сигнала во временной области совместно с фильтрацией в частотной области. Преобразование «сжатие», обозначенное символом C, сжимает периоды колебания, которые больше некоторого среднего периода, и растягивает те из них, которые меньше, а обратное преобразование — «растяжение» C^{-1} возвращает сигнал в исходное состояние. Применение операции «сжатие-растяжение» позволяет группировать частотный спектр сигнала вблизи несущей частоты, рис. 1.

Численная реализация операции «сжатие-растяжение» основана на алгоритме сплайн-интерполяции с использованием априорной информации о восстанавливаемой фазе. Предположив, что функция фазы φ монотонно возрастающая, получим, что обратная ей функция φ^{-1} будет однозначна, и не будет иметь разрывов, что особенно важно для ее численной реализации.

$$\varphi(x) = f_c z(x), \quad x(z) = \varphi^{-1}(f_c z),$$

где f_c – частота несущая, x, z – шкала отсчетов прямая, обратная.

Введем преобразование «сжатие-растяжение» вдоль оси *х* следующим образом. Пусть **H** есть оператор последовательного выполнения полосовой фильтрации на несущей частоте f_c и преобразования Гильберта, тогда для сигнала, представленного в виде колебательного процесса $U(x)=[1+\mu(x)]\cos\varphi(x)$, где $1+\mu(x)$ – амплитуда сигнала, алгоритм реализации операции «сжатие-растяжение» совместно с полосовой фильтрацией может быть представлен в следующем виде:

$$C[1 + \mu(x)]\cos\varphi(x) = \{1 + \mu[\varphi^{-1}(f_c z)]\} \times$$

$$\times \cos\{\varphi[\varphi^{-1}(f_c z)]\} = \cos f_c z + \mu(z) \cos f_c z, \quad (1)$$

$$\mathbf{H}[\cos f_c z + \mu(z)\cos f_c z] = \sin f_c z, \qquad (2)$$

$$C^{-1}\sin f_c z = \sin \varphi(x). \tag{3}$$

Как следует из уравнений (1-3), преобразование «сжатие-растяжение» и полосовая фильтрация позволяют выделить из колебания с монотонной фазой гармоническое колебание с частотой f_c , для которого находится Гильберт-трансформанта, которая затем сжимается и растягивается в обратном порядке.

Возникает вопрос о реализации описанных операций. Для того, чтобы определить $\varphi(x)$, необходимо задать некоторую начальную фазу для осуществления преобразований (1–3). Можно

предположить, что величины $\varphi_0(x)$, определяемой в соответствии с выражением (4), будет достаточно для осуществления начального сжатия спектра

$$\rho_0(x) = \operatorname{arctg}\left\{\frac{\mathbf{H}U(x)}{U(x)}\right\}.$$
(4)

Затем процесс восстановления фазы реализуется по формуле (5) [2].

$$\varphi_0(x) = \operatorname{arctg}\left\{\frac{\mathbf{H}U[\varphi_n^{-1}(f_c z)]}{U[\varphi_n^{-1}(f_c z)]}\right|_{z=\frac{\varphi_n(x)}{f_c}}\right\},$$
(5)

где *n*=0,1,2,...

В результате многократного повторения процесса восстановления находят последовательность значений фазы. Эта последовательность будет сходиться к точному решению в том случае, если при неограниченном возрастании числа итераций будет существовать предел этой последовательности. Наличие сходимости определено в ходе отдельного численного эксперимента, по результатам которого при уровне аддитивного шума $\sigma=0,2$ для достижения заданного уровня допустимой погрешности ($\varepsilon=0,0001$) было произведено от 5 до 9 итераций.

Для определения эффективности и целесообразности применения предложенного алгоритма, реализующего операцию «сжатие-растяжение», а также для определения свойств данной операции проведен замкнутый численный эксперимент. В рамках эксперимента было осуществлено численное исследование качества оценок фазы. Результаты работы операции «сжатие-растяжение» получены при разных уровнях и видах вносимого в исходный сигнал шума, а также при исходных сигналах с разной шириной спектра частот.

Описание этапов численного эксперимента

1. Формирование исходного сигнала и сигнала с шумом.

Исходный сигнал задавался в соответствии с математической моделью $U(x)=[1+\mu(x)]\cos\varphi(x)$. В качестве фазы в модельном сигнале использовалась функция следующего вида:

$$\varphi_{e}(x) = \frac{2\pi T(x-1)}{N} + a\sin\left[\frac{2\pi T(x-1)^{2}}{N^{2}}\right] + b\sin\left[\frac{2\pi (x-1)}{N}\right],$$
 (6)

где φ_e – начальная фаза, N – количество отсчётов, *a*, *b* – постоянные коэффициенты, T – количество периодов колебания, T=10.

Шум формировался в частотной области. За центр полосы частот шума была принята несущая частота исходного сигнала f_c . Частотный диапазон шума заполнялся псевдослучайными числами, имеющими равномерное распределение. Сигналшум, вводился в исходный сигнал аддитивно или мультипликативно во временной области. 2. Восстановление фазы из смеси сигнала с шумом на основе операции «сжатие-растяжение» и определение ошибки восстановления фазы.

Вычисление фазы осуществлялось в соответствии с выражением:

$$\varphi = \operatorname{arctg} \frac{V(x)}{U(x)} \pm n\pi$$

где V(x) — мнимая часть, V(x)=**H**[U(x)], U(x) — действительная часть сигнала.

Восстановление функции фазы производилось путем последовательного сшивания элементов дискретной фазы. Оценка нормированной среднеквадратической ошибки восстановления фазы вычислялась по формуле:

$$\varepsilon_{\phi} = \sqrt{\frac{\sum_{i=1}^{N} (\Delta \varphi_{i} - \overline{\Delta} \varphi)^{2}}{\sum_{i=1}^{N} (\varphi_{i}^{e} - \overline{\varphi}^{e})^{2}}},$$

где $\Delta \phi$ – разность между исходной и восстановленной фазами, $\overline{\Delta} \phi$ – среднеарифметическое значение разности фаз, ϕ^e – разность между исходной фазой и прямой, проведенной через начальное и конечное значение исходной фазы, $\overline{\phi}^e$ – среднеарифметическое значение разности между исходной фазой и прямой.

Выборочный ансамбль состоял для всех экспериментов из 100 разных реализаций сигналов для каждого уровня шума. Отдельные контрольные эксперименты с большим объемом выборки показали, что среднее и дисперсия, полученных оценок остаются неизменными, что было расценено как наличие статистической устойчивости. При данном объеме выборки в силу центральной предельной теоремы среднее арифметическое значение ошибки $\langle \varepsilon_{\omega} \rangle$ будет распределено по закону, близкому к нормальному. При проведении статистического эксперимента представляют интерес случаи с малым среднеквадратичным отклонением σ_{ω} , что означает устойчивость алгоритма оценивания фазы к входным параметрам, вследствие этого среднее арифметическое значение как оценка ошибки фазы ε_{ω} будет близко к оценке максимального правдополобия.

Шум в частотной области занимал полосу от нуля до удвоенного значения несущей частоты исходного сигнала f_c . В качестве начальной информации для осуществления растяжения и сжатия сигнала использовалась исходная фаза. Оценка нормированной среднеквадратической ошибки восстановления фазы рассчитывалась при изменении отношения шума к сигналу от 0,1 до 0,7.

Из результатов эксперимента, представленных на рис. 2, видно, что с увеличением уровня шума растет среднее значение нормированной среднеквадратической ошибки восстановления фазы и увеличивается ее среднеквадратическое отклонение. Сравнение оценок нормированной среднеквадратической ошибки восстановления фазы при мультипликативном (рис. 2, *a*) и аддитивном (рис. 2, *б*) шуме позволяет сделать вывод о том, что наибольшую ошибку в восстановление фазы вносит аддитивный шум. Полученные оценки определяют потенциальную точность операции «сжатие-растяжение».

Рис. 2. Оценки нормированной среднеквадратической ошибки восстановления фазы после операции «сжатие-растяжение» с исходной фазой при шуме: а) мультипликативном, б) аддитивном

При проведении анализа реальных сигналов исходная фаза является неизвестной, поэтому для осуществления операции «сжатие-растяжение» применяют функцию фазы, восстановленную из исследуемого сигнала с шумом.

По результатам эксперимента с использованием в качестве исходной информации для осуществления операции «сжатие-растяжение» восстановленной фазы (рис. 3, δ , для мультипликативного и на рис. 3, e, для аддитивного шума) можно сделать вывод о том, что исходная информация о фазе оказывает существенное влияние на ошибку ее восстановления. Ошибка при сравнении с результатами первого эксперимента (рис. 2) выше в 3...5 раз.

Проведено сравнение полученных оценок нормированной среднеквадратической ошибки восстановления фазы после применения операции «сжатие-растяжение», включающей полосовую фильтрацию (рис. 3, б, г), и после полосовой фильтрации спектра аналогичных сигналов без применения операции «сжатие-растяжение» (рис. 3, а, в). Данные результаты отражают то, что оценка нормированной среднеквадратической ошибки восстановления фазы после применения операции «сжатие-растяжение» с исходной фазой в несколько раз ниже (для мультипликативного шума в 3...7 раз, для аддитивного шума в 2...3 раза) по сравнению с результатами полосовой фильтрации без применения операции «сжатие-растяжение».

В результате замены исходной фазы на восстановленную в операции «сжатие-растяжение» ее эффективность по отношению к полосовой фильт-

Рис. 3. Оценки нормированной среднеквадратической ошибки восстановления фазы при мультипликативном шуме (а, б) и при аддитивном шуме (в, г) после применения: а, в) полосовой фильтрации; б, г) операции «сжатие-растяжение» с восстановленной фазой

рации без применения операции «сжатие-растяжение» снижена для мультипликативного шума до 1,5 раз, для аддитивного шума до 1,3 раз. Данное исследование позволяет сделать вывод о том, что ошибка восстановления фазы с применением операции «сжатие-растяжение» будет тем меньше, чем точнее априорная информации об исходной фазе.

Наиболее значимым исследованием является определение влияния величины частотного интервала шума *F* на работоспособность операции «сжатие-растяжение». Данное исследование проводилось при постоянном уровне шума (σ =0,4). Частотный интервал шума *F* варьировался от 0 до 80 при собственной частоте исходного сигнала f_c =10. Результаты данного численного эксперимента, рис. 4, показывают, что величина частотного интервала шума не оказывает влияния на изменение ошибки при использовании операции «сжатие-растяжение» в отличие от полосовой фильтрации без применения операции «сжатие-растяжение», при которой оценка нормированной среднеквадратической ошибки восстановления фазы растет с увеличением частотного интервала адитивного шума.

Вторым значимым исследованием является применение операции «сжатие-растяжение» для сигналов с «широким» частотным спектром, т.к. они наиболее соответствуют реальным сигналам, получаемым при анализе биоиндикационных картин [3]. Эксперимент проводился для аддитивного шума постоянного уровня (σ =0,4). Варьируемым параметром в данном эксперименте являлся интервал частотного спектра исходного сигнала (рассматривались сигналы, для которых *F*=6, 8, 10, 12 при *f*_c=10).

Из результатов проведенного эксперимента (рис. 5) следует, что изменение интервала частотного спектра исходного сигнала не оказывает влияния на изменение оценки нормированной среднеквадратической ошибки восстановления фазы при использовании операции «сжатие-растяжение» до тех пор, пока выполняется условие $F \leq f_c$, а при полосовой фильтрации без применения операции «сжатие-растяжение» наблюдается постоянное ее увеличение при расширении спектра частот сигнала.

В результате замкнутого численного эксперимента показано, что при использовании алгоритма,

Рис. 5. Оценки нормированной среднеквадратической ошибки восстановления фазы для сигналов с разной шириной спектра частот при аддитивном шуме после применения: а) полосовой фильтрации; б) операции «сжатие-растяжение» с восстановленной фазой

реализующего операцию «сжатие-растяжение» совместно с полосовой фильтрацией:

 Ошибка восстановления фазы сигнала ниже при мультипликативном шуме в 1,5 раза, при аддитивном шуме в 1,3 раз по отношению к ошибке восстановления фазы сигнала при использовании полосовой фильтрации без применения операции «сжатие-растяжение».

СПИСОК ЛИТЕРАТУРЫ

- Ваганов Е.А., Шашкин А.В. Рост и структура годичных колец хвойных. – Новосибирск: Наука, СИФ РАН, 2000. – 232 с.
- Тартаковский В.А., Волков Ю.В., Исаев Ю.Н., Несветайло В.Д., Попов В.Н. Математическая модель радиального сечения годичных колец деревьев // Автометрия. – 2003. – № 5. – С. 118–127.
- Нуссенцвейг Х.М. Причинность и дисперсионные соотношения. – М.: Мир, 1976. – 208 с.
- Doroslovacki M.I. On nontrivial analytic signals with positive instantaneous frequency // Signal Processing. – 2003. – № 83. – P. 655–658.

- Величина частотного интервала исходного сигнала не влияет на точность восстановления фазы при выполнении условия *F*≤*f_c*.
- 3. Точность восстановления фазы не зависит от величины частотного интервала шума.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект «Обь» № 05-07-98009.

- Vakman D. On the analytic signal, the Teager Kaiser energy algorithm, and other methods for defining amplitude and frequency // IEEE Trans. Signal processing. – 1996. – № 4. – P. 791–815.
- Cohen L., Loughlin P., Vakman D. On an ambiguity in the definition of the amplitude and phase of a signal // Signal Processing. – 1999. – № 79. – P. 301–312.
- Нуссенцвейг Х.М. Причинность и дисперсионные соотношения. – М.: Мир, 1976. – 208 с.