ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

1972 Том 227

ОБ УДЕЛЬНЫХ ПОКАЗАТЕЛЯХ СТОИМОСТИ производства электроэнергии

И. Д. КУТЯВИН

Для технико-экономической оценки вариантов линий электропередачи, отдельных участков сети, схем электроснабжения и подстанций, технико-экономического исследования серий трансформаторов и двитателей при их проектировании приходится пользоваться такими техникоэкономическими удельными показателями, как удельные капзатраты в систему на один киловатт потребляемой мощности и расчетная стоимость электроэнергии в месте потребления.

Автору известны две официальные методики, посвященные этому вопросу*. Как видно из названий, они носят частный характер и, к сожалению, содержат существенные недостатки, о которых будет сказано ниже. Поэтому назрела необходимость разработки обобщенных рассматриваемых технико-экономических удельных показателей.

Удельные расчетные капзатраты на один киловатт мощности, передаваемой потребителю, или теряемой в сети или трансформаторе, состоят из следующих составляющих:

1. Капзатраты на добавочную мощность электростанций системы,

необходимую для передачи потребителю 1 квт.

2. Капзатраты на добавочную производительность топливодобывающего цеха станции, необходимую для выработки добавочной мощности системы.

3. Капзатраты на добавочную пропускную способность электричес-

ких сетей системы до места потребления 1 квт.

Для упрощения задачи капзатраты на электросети можно принять пропорциональными суммарным капзатратам на сооружение электростанций системы и составляющими $(40 \div 50)$ % этих затрат.

Для передачи потребителю 1 квт мощности, приключенному на каком-либо участке сети, с шин электростанции необходимо выдать мощность $P_{\rm m} > 1$, учитывающую потери в предыдущей сети. Тогда

^{*} Руководящие и нормативные указания по выбору экономической плотности тока для линий электропередачи. Теплоэлектропроект, М. 1961; П. Г. Грудинский. Проект указаний по технико-экономическому обоснованию выбора уровня и соотношения потерь в электрических двигателях и трансформаторах при проектировании массовых серий. (См.: П. М. Тихомиров. Расчет трансформаторов. ГЭИ, 1962).

добавочная мощность системы с учетом собственного расхода электростанции и резерва мощности в системе

$$P_{\rm m} = \kappa_{\rm cH} \kappa_{\rm p} P_{\rm in}, \tag{1}$$

где $P_{\rm m}=1,0=1,15$ — мощность, отдаваемая с шин электростанции для передачи потребителю 1 κsm ;

 $\kappa_{\rm p} = 1.1 \div 1.15 - {
m коэффициент}$ резерва системы;

 $\kappa_{\rm ch}$ — коэффициент, учитывающий расход мощности на собственные нужды электростанции, и мощность, потребляемую топливодобывающим цехом (шахтой, угольным разрезом) станции.

Расход мощности на собственные нужды электростанции обычно принимается в пределах $6 \div 8\%$. Расход мощности топливодобывающим цехом станции в относительных единицах можно определить из выражения

 $P_{\mathrm{T}} = q w_{\mathrm{y}} \frac{T_{\mathrm{MII}}}{T_{\mathrm{MII}}}, \tag{2}$

где q — удельный расход условного топлива (ym) на 1 $\kappa sm \cdot u$, $\frac{m \cdot ym}{\kappa sm \cdot u}$;

 w_{y} — удельный расход электроэнергии на добычу одной тонны условного топлива, $\frac{\kappa \textit{вm}.\cdot \textit{ч}}{\textit{m}\cdot \textit{уm}}$;

 $T_{\rm mt}$ — годовая продолжительность использования максимума топливо добывающего цеха;

 $T_{\rm MR}$ — то же для потребителя.

Тогда коэффициент

$$\kappa_{\rm ch} = 1.07 + P_{\rm T} = 1.07 + q w_{\rm y} \frac{T_{\rm MII}}{T_{\rm MT}}.$$
(3)

Максимум мощности в процентах, потребляемой топливо добывающим цехом при $w_y = (30 \div 60)$, $q = 0.35 \cdot 10^{-3}$.

$$P_{\rm T} = 100 \cdot 0.35 \cdot 10^{-3} (30 \div 60) = (1.0 \div 2.1) \%.$$

Это существенная мощность и пренебрегать ею нельзя.

Капзатраты на сооружение добавочной мощности электростанций и сетей, отнесенные на 1 квт передаваемой потребителю мощности

$$3_{yec} = C_c \kappa_{ec} P_{\mu}, \tag{4}$$

где $C_{\rm c}$ — удельные капзатраты на один установленный киловатт мощности электростанции,

 $\kappa_{\rm sc} = 1.0 \div 1.5$ — коэффициент, учитывающий капзатраты на создание добавочной пропускной способности сетей до места потребления 1 κ вm.

Для станционных потребителей $\kappa_{\rm sc}=1$, а для самых удаленных $\kappa_{\rm sc}=1,5$.

Годовой расход условного топлива на 1 *квт* мощности у потребителя

$$Q_{\mathrm{T}} = \kappa_{\mathrm{CH}} P_{\mathrm{III}} T_{\mathrm{M\Pi}} q. \tag{5}$$

Капзатраты на создание добавочной производительности топливодобывающего цеха и транспорта топлива в связи с передачей потребителю 1 *квт*

$$\beta_{\rm vT} = C_{\rm T} Q_{\rm T} = C_{\rm T} \kappa_{\rm CH} P_{\rm III} T_{\rm MR} q, \tag{6}$$

где C_{τ} — удельные капзатраты на сооружение топливной базы и транспорта топлива производительностью в одну тонну ут в год, руб./т. ут.

Суммарные капзатраты на добавочную мощность системы на 1 квг передаваемой потребителю мощности

$$3_{yk} = 3_{ysc} + 3_{yr} = \kappa_{cH} P_{III} \left(C_c \kappa_p \kappa_{sc} + C_r q T_{MII} \right). \tag{7}$$

В таблице приведены ориентировочные значения 3_{yk} , вычисленные из (7) при $\kappa_{ch}=1,085;\ \kappa_p=1,1;\ C_{\tau}=30 \frac{py\delta}{m\cdot ym}$ и $C_c=130 \frac{py\delta}{\kappa \epsilon m}$ (в це-

нах 1969 г.); $q = 0.35 \cdot 10^{-3} \frac{m \cdot ym}{\kappa \epsilon m \cdot y}$.

Остальные исходные данные указаны в таблице.

Таблица

Место присое- динения по- требителя	Р	$\kappa_{ ext{ iny 9C}}$	3 _y .	Значения $T_{ m M}$, час				
				2000	3000	4000	5000	6000
1. Станционные потребители	1	1,0	З _{ук} З _{уэ}	179 0,006	188 0,006	200 0,006	212 0,006	224
2. Потребители сетей 110 кв и выше	1,06	1,25	З _{ук} З _{уэ}	230 0,0080	242 0,0074	254 0,0072	266 0,0070	278 0,0069
3. Потребители вторичных сетей 6—35 кв	1,09	1,35	З _{ук} З _{уэ}	254 0,0088	265 0,0081	278 0,0077	290 0,0075	303
4. Потребители третичных сетей 0,4—6 кв	1,12	1,5	З _{ук} З _{уэ}	286 0,0099	298 0,0089	311 0,0083	323 0,0080	336 0,0078

При определения 3_{yk} в руководящих и нормативных указаниях пе учитываются следующие показатели:

1. Капзатраты на добавочную пропускную способность сети до ме-

ста потребления 1 квт.

2. Капзатраты на добавочную мощность системы и добавочную производительность топливной базы, необходимые для покрытия мощности потерь в сети до места потребления 1 квт.

3. Расход на собственные нужды в топливной составляющей кан-

затрат.

4. Капзатраты на добавочную мощность системы, необходимую для питания топливодобывающего цеха.

5. Коэффициент попадания в максимум системы $\kappa_{_{M}}$ в капзатратах

на создание добавочной топливной базы.

Далее, целесообразнее вообще не вводить в выражение для 3_{yk} коэффициент κ_{M} и коэффициент экономической эффективности p_{H} , а употреблять произведение κ_{M} p_{H} 3_{yk} , так как значения κ_{M} и p_{H} для потребителей могут быть различными.

В работе проф. П. Г. Грудинского в качестве 3_{yk} употребляются полные удельные капитальные вложения в систему (κ_c) в $pyb/\kappa в r$.

Расшифровки этого понятия мы не нашли.

Расчетная стоимость электроэнергии в месте потребления состоит из следующих составляющих:

1. Из себестоимости электроэнергии, отдаваемой с шин электростанции при передаче потребителю 1 квт.

2. Из отчислений на амортизацию, ремонт и обслуживание от пол-

ных капзатрат на сеть до места потребления 1 квт.

Годовая стоимость электроэнергии, отдаваемой с шин станции при передаче потребителю 1 квт:

$$3_{\mathbf{m}} = C_{9\mathbf{m}} P_{\mathbf{m}} T_{\mathbf{m}\mathbf{n}}. \tag{8}$$

Отчисления от капзатрат на сеть до места потребления 1 квт;

$$\beta_{\rm a} = c_{\rm c} \, p_{\rm ap} \, (\kappa_{\rm ec} - 1), \tag{9}$$

где $p_{\rm ap}$ — норма отчислений на амортизацию, ремонт и обслуживание в относительных единицах,

 $C_{\text{эш}}$ — себестоимость электроэнергии, отдаваемой с шин электростанции.

Тогда суммарные годовые эксплуатационные затраты на 1 квт:

$$3_9 = 3_{\text{III}} + 3_a = C_{9\text{III}} P_{\text{III}} T_{\text{MII}} + c_c p_{ap} (\kappa_{9c} - 1).$$
 (10)

Расчетная стоимость электроэнергии (руб/квт.ч)

$$3_{y9} = C_{9III} P_{III} + \frac{c_{c} p_{ap}}{T_{MIT}} (\kappa_{9c} - 1). \tag{11}$$

Ориентировочные значения расчетной стоимости электроэнергии в месте потребления, вычисленные из (11) при $C_{\text{эш}} = 0,006 \frac{py6}{\kappa sm \cdot u}$

$$c_{\rm c}=130~rac{py \delta}{\kappa s m}\,; \;\; p_{
m ap}=0{,}10,\;$$
приведены в таблице.

Для определения расчетной стоимости электроэнергии потерь холостого хода трансформаторов из (11) нужно $T_{\rm мп}$ заменить полным временем включения трансформатора в году, а для потерь в проводах сети и обмотках трансформаторов — временем потерь τ .

В указанных выше методиках в себестоимости электроэнергии учтены только топливная составляющая и амортизационные отчисления от капзатрат на добавочную мощность. В себестоимости топлива не учтен расход на собственные нужды. Это может приводить к недопустимой погрешности в оценке расчетной себестоимости электроэнергии.

Определение расчетной себестоимости электроэнергии по предлагаемому методу едва ли более сложно, чем оценка ее только по ука-

занным двум составляющим.

В заключение нужно заметить, что ряд вопросов, затронутых в статье, имеет дискуссионный характер, поэтому желательно материал этой статьи подвергнуть обсуждению.