Технические науки

УДК 539.16.04

ИССЛЕДОВАНИЯ НАКОПЛЕНИЯ ВОДОРОДА В ЦИРКОНИЕВОМ СПЛАВЕ МЕТОДОМ ТЕРМОСТИМУЛИРОВАННОГО ГАЗОВЫДЕЛЕНИЯ

Н.Н. Никитенков, Ю.И. Тюрин, И.П. Чернов, А.В. Скирневский, Г.В. Гаранин, А.М. Лидер, Ю.П. Черданцев

Томский политехнический университет E-mail: nikitenkov@fnsm.tpu.edu.ru

Изучено термостимулированное газовыделение из насыщенного водородом сплава циркония Э-125 в зависимости от степени деформации. Образцы сплава циркония подвергались растяжению с относительным удлинением 2,5; 5,0 и 10,0 %, а затем насыщались водородом электролитическим способом при плотности тока 0,5 А/см² в течении 4 ч. Либо наоборот, вначале насыщались водородом, а затем подвергались деформациям. Деформация образцов сплава циркония приводит к образованию ловушек с разными энергиями связи водорода. Причем, как энергии связи, так и количество водорода, захваченного в ловушки, зависят как от величины деформации, так и от последовательности операций «деформация-насыщение». Оценены величины энергий связи водорода в ловушках. Идентифицированы типы ловушек.

Введение

Циркониевые сплавы, благодаря малому сечению поглощения тепловых нейтронов, высокой стойкости к коррозии, хорошим механическим свойствам и лёгкости обработки являются основным конструкционным материалом для элементов активной зоны и тепловыделяющих систем атомных энергетических реакторов [1]. Одним из важных требований к материалам активной зоны реакторов является низкое поглощение водорода. Наводороживание приводит к снижению пластичности и трещиностойкости сплавов, а выделение хрупких гидридов в зонах концентрации напряжений может стать причиной разрушения изделий за счёт образования и роста гидридных трещин по механизму замедленного разрушения при температурах эксплуатации. Циркониевые сплавы активно поглощает водород уже при 300 °C, образуя твёрдый раствор и гидриды ZrH и ZrH₂ [2]. Поэтому взаимосвязь упругих характеристик сплавов циркония с поведением насыщающего их водорода представляет фундаментальный интерес как с точки зрения безопасности реакторных установок, так и с точки зрения возможности управления механическими свойствами циркония.

Целью данной работы являлось изучение закономерностей накопления водорода в зависимости от степени деформации образцов бинарного сплава циркония марки Э-125 (Zr-2,5 % Nb), используемого в ряде высокотехнологичных узлов АЭС.

Методика эксперимента

Методом термостимулированного газовыделения (ТСГВ) исследованы 3 партии образцов бинарного сплава циркония Э-125:

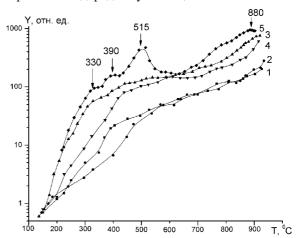
- 1. Исходный и подвергшиеся деформациям (растяжению) с относительным удлинением $\Delta \ell / \ell = 2.5$; 5,0 и 10,0 %.
- 2. Исходный и вначале подвергшиеся деформациям с тем же относительным удлинением, а затем насыщенные водородом электролитическим способом с плотностью тока J=0,5 A/cm² в течении 4 ч.
- 3. Вначале насыщенные водородом, а затем подвергшиеся деформациям; параметры насыщения и растяжения те же, что и в п. 2.

Исходные образцы размером $30\times3\times3$ мм механически полировали и отжигали при давлении 10^{-4} Па и температуре 550 °C в течение 60 мин с последующим охлаждением в печи без ухудшения вакуума. Насыщение водородом производилось в электролитической ячейке при использовании образцов в качестве катодов. Электролит — H_2SO_4 молярной концентрации при температуре 20 °C. Для растяжения образцов использовалась испытательная машина Com-Ten DFM 5000.

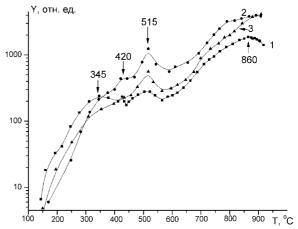
Установка для исследования ТСГВ описана в работах [3, 4]. Блок программируемого нагрева позволяет вести линейный нагрев образцов от 20 до 1100 °C со скоростью от 0,1 до 5 град/с. Камера на-

грева образцов сопряжена через шлюз с монопольным масс-спектрометром МХ-7304. Такая конструкция допускает быструю смену исследуемых образцов и проведение непрерывной записи интенсивностей выделяемых при нагреве газов с массами от 1 до 250 а.е.м. В измерительной ячейке массспектрометра вакуум не хуже 10-5 Па. Финишная откачка осуществлялась магниторазрядными насосами. Относительная погрешность измерения интенсивности массовых линий не превышает 5 %. Перед экспериментом, при многократном прогреве вакуумной ячейки без образца, было установлено, что при температурах выше 800 °C интенсивность газовыделения водорода Н₂ возрастает по сравнению с вакуумным уровнем максимум в 5...6 раз. При нагревании вакуумной ячейки с образцом, интенсивность газовыделения водорода возрастает по сравнению с вакуумным уровнем до 4-х порядков (рис. 1-3). Поэтому на представленных ниже рисунках, приведены зависимости интенсивности термостимулированного выделения водорода Н₂ из образцов сплава циркония Э-125, без вычитания фона прогрева вакуумной ячейки.

Для оценки энергии связи водорода в ловушках использовался способ, основанный на калибровочных прямых зависимости энергии активации десорбции E_d от температуры $T_{\text{\tiny MAKC},i}$, при которой наблюдается і-й максимум на зависимости выхода водорода от температуры и скорости нагрева [5]. Используя данные зависимости и учитывая малые различия между энергией связи атомов водорода в образце E_{cs} и энергией активации десорбции E_{ds} можно очевидным образом использовать данные зависимости для оценки E_{cs} . Для сравнения содержания водорода в разных образцах температурные зависимости выхода водорода от температуры (спектры) ТСГВ интегрировались по полному времени нагрева. Представленные ниже спектры ТСГВ получены при скорости нагрева 1 град/с.


Результаты и обсуждение

На рис. 1—3 представлены зависимости интенсивности термостимулированного выделения водорода из образцов от температуры.


На рис. 4 показаны зависимости интегрального выхода водорода от степени деформации и насыщения водородом. Интегрирование проводилось с помощью модуля интегрирования из пакета прикладных программ OriginPro 7.0 (OriginLab Corporation).

Сравнение кривых рис. 1—3 показывает, что деформации и насыщение образцов сплава циркония 9-125 водородом приводят к усложнению вида температурной зависимости ТСГВ — появляются характерные особенности (пики, ступеньки, перегибы). Стрелками на рис. 1—3 показаны максимумы температуры $T_{\text{макс},i}$, соответствующие этим особенностям. Из рис. 1 видно, что даже просто насыщение исходного (недеформированного) образца водородом приводит к увеличению интенсивности

выхода водорода и усложнению вида зависимости. Отметим, что специфические особенности наблюдаются во всех спектрах ТСГВ, но их $T_{\text{макс}}$ различаются, хотя некоторые из них (например, при $T_{\text{макс}}$ =515 °C) наблюдаются на всех образцах, подвергшихся водородному насыщению.

Рис. 1. Температурные зависимости интенсивности ТСГВ из образцов сплава циркония Э-125: 1) недеформированный образец и подвергшиеся деформации с относительным удлинением $\Delta \ell/\ell$, %: 2) 2,5, 3) 5,0, 4) 10,0; 5) недеформированный, насыщенный водородом образец

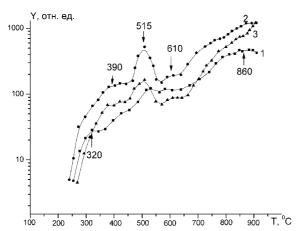


Рис. 2. Температурные зависимости интенсивности ТСГВ из образцов сплава циркония Э-125, вначале подвергшихся деформации и затем насыщенных водородом электролитическим способом, $\Delta \ell/\ell$, %: 1) 2,5, 2) 5,0, 3) 10,0

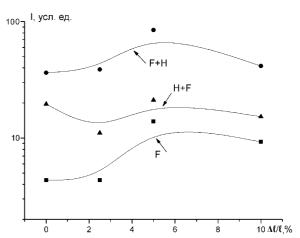
Отметим, что специфические особенности наблюдаются на всех кривых ТСГВ, но их $T_{\rm макс}$ различаются, хотя некоторые из них (например, при $T_{\rm макс}$ =515 °C) наблюдаются на всех образцах, подвергшихся водородному насыщению.

Известно, что указанные особенности связаны с выделением водорода из ловушек с определенной энергией активации десорбции E_d ; величины E_d однозначно связаны с $T_{\text{макс}}$ [5]. Для анализа особенностей спектров ТСГВ примем следующие сокращения и допущения. Обозначим тип образца «F+H», если последовательность операций соответствует сначала его растяжению, а затем насыщению водо-

родом, и, наоборот, «H+F» — сначала насыщение водородом, затем растяжение образцов, «F» — деформированные, но не насыщавшиеся образцы. Выделим характерные области температур, в которых располагаются особенности спектров. Каждой из этих областей, вероятно, соответствует определенный тип водородных ловушек, которые сначала пронумеруем (в дальнейшем приведем доводы в пользу конкретных дефектов, ответственных за каждый из типов ловушек). Таким образом, всю информацию об особенностях ТСГВ можно представить в виде таблиц 1 и 2.

Рис. 3. Температурные зависимости интенсивности ТСГВ из образцов сплава циркония Э-125, вначале насыщенных водородом электролитическим способом и затем подвергшихся деформации, $\Delta \ell/\ell$, %: 1) 2,5, 2) 5,0; 3) 10,0 %

Таблица 1. Типы ловушек (1–5), соответствующие им температуры активации ($T_{\text{макс}}$), энергии активации десорбции (E_{d}) и энергии связи атомов водорода в ловушках (E_{cs})


Тип ловушки	T _{MaKC} , °C	E_d , ккал/моль	E_{cs} , эВ/атом
1	320345	39,040,7	1,701,77
2	390420	43,745,7	1,901,98
3	515	52	2,25
4	610	58,2	2,53
5	860880	74,676,1	3,243,30

Из табл. 1 видно, что в установленных температурных диапазонах соответствующие энергии связи различаются в сотых долях эВ и поэтому можно полагать, что в данном диапазоне мы имеем дело с одним типом ловушек.

Из табл. 2 видно, что наличие каждого из типов ловушек в образцах зависит от величины деформации и от последовательности операций деформации и насыщения. Относительное количество водорода, захваченного в ловушки, определяется порядком операций деформации и насыщения. Это видно как из сравнения интенсивностей разных участков спектров $TC\Gamma B$ (соответствующих ловушкам 1-5) на рис. 1-3.

Таблица 2. Систематизация особенностей спектров ТСГВ, рис. 1–3

Тип образца	$\Delta\ell/\ell$, %	Наличие ловушек данного типа ("+" – есть, "–" – нет)				
		1	2	3	4	5
Исходный	0	+	+	+	-	+
F+H	2,5	+	-	+	-	+
F+H	5,0	+	-	+	-	-
F+H	10,0	-	+	+	-	-
H+F	2,5	+	-	+	+	+
H+F	5,0	-	+	+	+	-
H+F	10,0	-	+	+	+	_

Рис. 4. Зависимости интегрального выхода водорода от степени деформации (величина погрешностей по обеим осям не превышает линейных размеров точек)

Сравнение кривых, представленных на рис. 4, показывает, что интегральный выход водорода:

- 1. повышается в несколько раз из деформированных образцов даже в случае, если их не насыщали водородом ни до, ни после деформации;
- 2. из образцов вначале деформированных, а затем насыщенных существенно выше, чем в других случаях;
- в случаях, когда образцы вначале насыщались водородом, слабо зависит от величины деформации.

Максимальный интегральный выход водорода наблюдается при 5 %-ной деформации, при 10 %-ной деформации выход в исследованном диапазоне температур ниже, чем при 5 %-ной. Из этого, однако, не следует, что малые относительные деформации (≤ 5 %) способствуют накоплению водорода, а при больших (≥ 10 %) водород выгоняется из образца. Дело в том, что максимум термовыделения водорода из сплава циркония лежит выше 1000 °C и характер поведения спектров ТСГВ вблизи 1000 °C показывает, что этот максимум при 10 %-ной деформации существенно выше, чем в любых других случаях. Действительно, вблизи 1000 °C интенсивность спектра ТСГВ из образцов с $\Delta \ell/\ell = 10$ % (кривая 3 на рис. 2, 3) возрастает замет-

но быстрее, чем другие, так что кривая 3 пересекается с кривой 2. То есть, при большой степени деформации водород захватывается и преимущественно накапливается в ловушках с большой энергией связи, для которых $T_{\text{макс}} > 1000$ °C, а $E_{ce} \ge 3$ эВ. Назовем эти ловушки ловушками с сильной связью, а ловушки типа 1-4 (табл. 1) ловушками со слабой связью.

Таблица 3. Сравнение относительного выхода водорода из ловушек с сильной и слабой связью

	T _{Makc} , °C	Тип образца			
Тип лову- шек		Исходный, насы- щенный водородом	F+H	H+F	
		Ү, отн. ед.			
5	880	943	4099	1210	
1	330	57	130	35	
3	515	473	562	164	
Отношения	Y ₈₈₀ /Y ₃₃₀	15,5	31,5	34,5	
	Y ₈₈₀ /Y ₅₁₅	1,99	7,3	7,4	

Получим численные оценки перераспределения водорода между ловушками со слабой и сильной связью при деформации. Для этого в случае 10 %-ной деформации разделим интенсивность спектра 5, рис. 1, а также спектров 3, рис. 2 и 3, в точках, соответствующих максимальной температуре (~1000 °C) на интенсивность тех же спектров в точках, соответствующих первому и третьему типам особенностей (то есть соответствующих темпе-

СПИСОК ЛИТЕРАТУРЫ

- 1. Дуглас Д. Металловедение циркония. М.: Атомиздат, 1975. 360 с.
- Никулин С.А., Рожнов А.Б., Бабукин А.В. и др. Структура и сопротивление разрушению циркониевых сплавов для атомной энергетики // Материаловедение и термическая обработка металлов. – 2005. – № 5. – С. 8–17.
- Тюрин Ю.И., Чернов И.П., Кренинг М., Баумбах Х. Радиационно-стимулированный выход водорода из металлов. – Томск: ТГУ, 2000. – 263 с.

ратурам 330 и 515 °C). Из результатов численных оценок, представленных в табл. 3, видно, что относительный выход водорода из ловушек с сильной связью при деформации увеличивается более чем в 2 раза по сравнению с ловушками типа 1 и более чем в 3 раза по сравнению с ловушками типа 3.

Описанные выше закономерности позволяют идентифицировать ловушки типа 1—4 как дислокации (с их различными модификациями) и межзеренные границы, а ловушки типа 5 и более высокоэнергетичные (не наблюдаемые в нашем эксперименте) как микропоры и микротрещины. Такая интерпретация в данной постановке эксперимента, в общем, очевидна, поскольку при растяжении образцов именно дислокации и межзеренные границы дают начало порам и трещинам.

Заключение

Установлено, что деформации сплава циркония Э-125 приводят к образованию ловушек с разными энергиями связи водорода. Преимущественный тип ловушек зависит от степени деформации. Энергии связи и количество водорода, захваченного в ловушки, зависят от величины деформации и от последовательности операций деформации и насыщения. Оценены величины энергий связи водорода в наблюдаемых типах ловушек, дана наиболее вероятная идентификация ловушек.

Работа выполнена при поддержке Международного научно-технического центра, грант № 2864.

- Тюрин Ю.И., Чернов И.П., Кренинг М., Баумбах Х. Возбуждение водородной подсистемы в металлах и сплавах ионизирующим излучением // Известия Томского политехнического университета. – 2000. – Т. 303. – № 3. – С. 51–61.
- 5. Вудраф Д., Делчар Т. Современные методы исследования поверхности. М.: Мир, 1989. 564 с.