ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

TOM 233

1974

ИССЛЕДОВАНИЕ РЕАКЦИИ АЦИЛИРОВАНИЯ N-ЗАМЕЩЕННЫХ АРИЛАЛКИЛМОЧЕВИН В ПРИСУТСТВИИ РАЗЛИЧНЫХ ХЛОРАНГИДРИРУЮЩИХ АГЕНТОВ

А. Г. ПЕЧЕНКИН, Л. Г. ТИГНИБИДИНА, Т. В. АНТОНОВА

(Представлена научно-методическим семинаром XTФ)

Настоящая работа посвящена нахождению лучших хлорангидрирующих агентов в реакциях ацилирования арилалкилмочевин. Необходимость подобных исследований обусловлена тем, что ацилированные мочевины обладают противосудорожным действием и могут найти практическое применение при лечении соответствующих заболеваний.

Ацилированные мочевины могут быть получены в реакции производных N-арил, алкилмочевин с хлорангидридами и ангидридами карбоновых кислот [II—4]; предложены также способы ацилирования мочевин карбоновыми кислотами с хлорангидрирующими агентами типа SOCl₂ [5], PCl₃ [6], HOSO₂Cl [7]. Ацилирование карбоновыми кислотами в присутствии SOCl₂ или PCl₃ более продолжительно (8—12 часов), чем хлорангидридами (2—5 часов); однако при первом способе не требуется отдельного получения хлорангидридов кислот.

Нами выполнено ацилирование бензгидрилмочевины (1) — $(C_6H_5)_2$ СНNHCONH₂ пропионовой кислотой в присутствии следующих хлорангидрирующих агентов: SOCl₂, PCl₃, PCl₅, POCl₃ и проведен сравнительный количественный анализ полученных результатов, кото-

рые представлены в табл. 1.

Из таблицы видно, что хлорокись фосфора является лучшим хлорангидрирующим агентом. После однократной перекристаллизации комечного продукта реакции с $POCl_3$ т. пл. его ($122-127^\circ$) приближается к т. пл. чистой бензгидрилпропионилмочевины (II) ($128-129^\circ$), в то время как с другими хлорангидрирующими агентами однократная перекристаллизация дает продукт с т. пл. $103-115^\circ$ С. Следует, однако, отметить, что при реакциях с $POCl_3$ и PCl_5 образуются продукты диацилирования вида (C_6H_5) 2CHNHCON(COC_2H_5) 2, которые при перекристаллизации не растворяются в горячем спирте. Элементарный анализ на углерод, водород и азот подтверждает образование диацилированного продукта с т. пл. $196-198^\circ$ C; N- найдено -7,90, вычислено -8,29; C- найдено -70,48, вычислено -70,80. В реакции ацилирования с $SOCl_2$ и PCl_3 образования диацилированного продукта не наблюдалось.

Для количественного измерения не проацилированной (1) использован применяемый в спектрофотометрическом анализе метод определения концентрации мочевины и ее N-алкил, арилпроизводных, основанный на взаимодействии мочевины с реактивом Эрлиха с образованием окрашенных в желтый цвет устойчивых комплексов [8]. Эта цвет-

Выход и т. пл. N-бензгидрил-N'-пропионилмочевины (П) после ацилирования с различными хлорангидрирующими агентами

Хлорангидрирующие агенты	Выход (I) по ФЭК анализу %	Т. пл. после I перекр. (°C)	Т. пл. после 3 перекр. °C	Выход очищенной (П) (%)
PCl ₅	83,3	103—110	120-125	34
PCl ₃	85,0	103—115	119—125	30
SOC1 ₂	93,8	105—115	121—125	43
POCl ₃	95,8	122—125	128—129	62

ная реакция использована нами для фотоколориметрического анализа (I) в смеси с (II) и (III) — последние не дают с реактивом Эрлиха экрашенного желтого комплекса. Найдено, что зависимость между концентрацией (1) и оптической плотностью приготовленных растворов подчиняется закону Бугера-Ламберта-Бера в пределах концентрации от 2,4 до 30 мг на 25 мл раствора:

На основе приведенных данных построен калибровочный график зависимости оптической плотности от концентрации (I), который использовали в дальнейшем для определения количественного выхода (I) после ацилирования.

Количественное определение N-бензгидрилмочевины

Приготовление реактива Эрлиха: 2,00 г *п*-диметиламинобензальдегида растворяется в 95%-ном этиловом спирте в мерной колбе объемом 100 *мл*, добавляется 0,50 мл концентрированной серной кислоты и объем доводится до метки этиловым спиртом.

Приготовление исследуемых растворов. Бензольный раствор по окончании реакции ацилирования испаряется на воздухе. Полученный остаток промывается 10%-ным водным раствором Na₂CO₃ и водой до нейтральной реакции и сушится. Из полученного осадка берется навеска 100 мг, которая растворяется в 25 мл этилового спирта. Затем в колбу объемом 25 мл наливается 5—10 мл приготовленного раствора, добавляется 5 мл реактива Эрлиха и объем доводится до метки этиловым спиртом. Перед измерением растворы выдержаны в течение 15 минут. Комплекс бензгидрилмочевины с реактивом Эрлиха довольно стойкий, цвет его не изменяется в продолжение 3—4 часов.

Измерение оптической плотности проведено на приборе ФЭК-56 со светофильтром № 3 в кювете 30,100 мм. Концентрация непрореагировавшей (I) в растворах, приготовленных после остановки реакции ацилирования, определена по калибровочному графику зависимости плотности от концентрации.

Заключение

1. Изучена реакция ацилирования бензгидрилмочевины пропионовой кислотой в присутствии различных хлорангидрирующих агентов (SOCl₂, POCl₃, PCl₅, PCl₃), в результате которой установлено, что наряду с PCl₃ и SOCl₂ в реакции ацилирования могут быть применены POCl₃ и PCl₅.

2. На основе фотоколориметрического анализа продуктов ацилирования найдено, что наибольший выход бензгидрилпропионилмочевины

достигается при использовании POCl₃.

3. Установлено, что в реакции ацилирования с PCl₅ и POCl₃ образуются диацилированные продукты, которые не обнаружены в реакциях с SOCl₂ и PCl₃.

ЛИТЕРАТУРА

1. Hajime Fujimura and Yutaca Yamakawa, Yacugaku, 80, 3358 (1960); Ch. Abst., 55, 1921 (1961). 2. Y. M. Beasley, V. Petrov, O. Stepanson, J. Pharm. Chem., 13, 694-7

(1961); Ch. Abst., 56, 6097 (1962).

3. Ph. Gold-Aubert and L. Tozibio, Arch Sci (Geneva) 16 (2), 405—10

(1963); Ch. Abst, 61, 1781a (1964).

4. Такатацу Хидэдзи, Умэлюто Сусуми, Капо Сэйдзабуро, Исозаки Такэси. Яп. пат., кл. 16 с 78, № 11972 заявлено 29.7.60, опубликовано 27.6.64. РЖХ, 1968, 2Н 345П.

5. Л. М., Семиколенных, М. Г. Кацпельсон, В. Б. Дельник. «Мед-

пром. СССР», № 10, 15-А, 1965. 6. Н. С. Добычина, А. Г. Печенкин, Л. Г. Тигнибидина. Авт. свид. № 188957 от 28 декабря 1965 г. 7. Ж. Г. Чащин, Г. И. Вишневская, О. Д. Литвинчук. «Журнал прикл.

химии», 33, 986-8, 1960.

8. R. C. Hoseney and K. F. Finney, Anal. Chem., 36, № 11, 2145—2148 (1965).