Том 116

1962

мост для контроля модуля и добротности комплексных сопротивлений

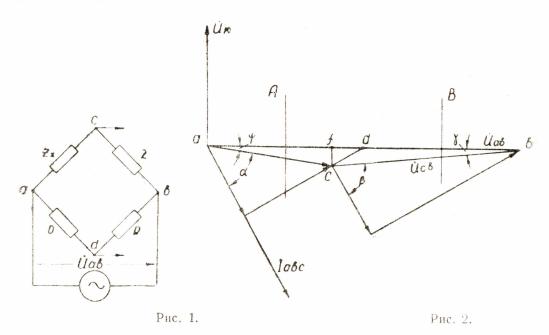
М. С. РОЙТМАН

(Представлено научно-технической конференцией радиотехнического факультета)

В условиях массового контроля обычно представляет интерес не абсолютное значение измеряемой величины, а ее процентное отклонение от определенной номинальной величины, либо только установление отличия от установлениого предела.

При этом наиболее целесообразно с точки зрения минимальных затрат времени применение прямопоказывающих приборов.

Ниже описывается относительно простой мост переменного тока, позволяющий проводить контроль величин отклонений модуля и аргумента проверяемого комплексного сопротивления Z_x от номинального значения Z.



На рис. 1 приведена схема четырехплечего моста с включением поверяемого комплексного сопротивления Z_x и образцового—Z в одну ветвь. Векторная диаграмма моста дана на рис. 2.

Величина Z_x может быть определена из сопоставления модулей напряжений U_{ac} и U_{cb} .

$$\frac{Z_x - Z}{Z} = \frac{\Delta Z}{Z} = \frac{U_{ac} - U_{cb}}{U_{cb}} . \tag{1}$$

Если на выходе моста включен фазочувствительный указатель, вектор управляющего напряжения которого совпадает по направлению с вектором питающего мост напряжения \dot{U}_{ab} , то мы можем сравнивать проекции \dot{U}_{ac} и U_{cb} на \dot{U}_{ab} .

Вектор тока через ветвь abc сдвинут по отношению питающего мост напряжения U_{ab} на угол, определяемый сопротивлением ветви,

$$\dot{Z}_{abc} = Z_x e^{j\alpha} + Ze^{j\beta}$$
.

Если $\alpha_x=\beta$, то точка c будет находиться на прямой ab; если же $\alpha_x\neq \beta$, то точка c будет выше или ниже этой прямой в зависимости от знака отклонения α_x от β .

Следовательно, при $\alpha \neq \beta$ контроль Z_x проводится с определенной погрешностью δ_M . Величина δ_M равна

$$\delta_{\mathcal{M}} = \frac{(Z + \Delta Z)\cos\psi - Z\cos\gamma}{Z\cos\gamma} - \frac{(Z + \Delta Z) - Z}{Z}.$$

Опуская промежуточные выкладки, вследствие их относительной громоздкости, получим

$$\delta_M \approx \frac{1}{4} \cdot \frac{\Delta Z}{Z} Q^2 \approx \frac{(Q_x - Q)^2}{4Q^4} \cdot \frac{\Delta Z}{Z} ,$$
 (2)

где

$$\Theta = \Psi + \lambda = \alpha - \beta \approx \frac{Q_x - Q}{Q} .$$

Например, для данных $\frac{\Delta Z}{Z} = 0.2;$ $\frac{Q_x - Q}{Q} = 0.4$ и Q = 4 $\delta_M \leqslant 0.05 \%$.

Как видим, погрешность метода находится в допустимых пределах

Общая погрешность сравнения Z_x с Z определяется также погрешностью измерения указателем напряжения $(U_{ac}\cos\psi-U_{cb}\cos\gamma)$ и нестабильностью U_{ab} .

Следовательно, контроль Z_x непосредственным измерением разностного напряжения приводит к необходимости стабилизации напряжения питания моста и применению фазочувствительного указателя с допустимой погрешностью.

Выполнение указанных требований не вызывает особых затруднений, хотя и связано с определенным усложнением схемы прибора, что само по себе уже нежелательно.

Однако, решающим является то, что при контроле Z_x вышеуказанным способом весьма затруднительно проведение контроля добротности Q_x . (при Q>5) или малых значений аргумент.

Как уже указывалось, положение точки c будет выше или ниже прямой ab в зависимости от знака отклонения α от β . Повернув вектор управляющего напряжения указателя на 90° по отношению к U_{ab}

можно проводить разбраковку комплексных сопротивлений по аргументу или по добротности.

Отношение величины проекции напряжения небаланса моста определяется зависимостью $(Z_x = Z)$

$$\frac{Rej\dot{U}_{cd}}{U_{ab}} = \frac{1}{2} tg \frac{\alpha - \beta}{2} = \frac{1}{2} tg \Theta/2.$$

Изменение модуля Z_x на ΔZ приводит к появлению погрешности в определении величины Θ

$$\delta_{\theta} \approx \frac{1}{4} \left(\frac{\Delta Z}{Z} \right)^2$$

Для данных $\Theta \approx 6^{\circ}$, $\frac{\Delta Z}{Z} = 0.2$ погрешность δ_0 не превышает $1^{\circ}/_{0}$.

Однако фазовая погрешность указателя φ приводит к погрешности поверки аргумента α

$$\Delta\,\Theta > rac{\Delta\,Z}{Z}\, \phi$$
 .

Минимальная же разность аргументов α и β должна быть больше $\Delta \Theta$. Откуда в грубом приближении получаем

$$\alpha - \beta = \frac{Q_x - Q}{Q^2} > \frac{\Delta Z}{Z} \cdot \varphi$$
.

Например, при Q=10, $\frac{\Delta Z}{Z}=0$,3 и $=\varphi 3^{\circ}$ минимально различимое от-

носительное изменение добротности больше 15%,

Однако если составляющую напряжения небаланса ReU_{cd} всегда сводить к малой величине, то точность контроля комплексных сопротивлений по добротности может быть резко повышена. Из рассмотрения векторной диаграммы моста (рис. 2) явственно следует, что $Re\dot{U}_{cd}$ может быть уменьшена и даже сведена к нулю перемещением точки d.

С целью "перемещения точки d" можно применить двигатель. Но такое решение, кстати применяемое исключительно часто, обладает рядом существенных недостатков, основными из которых являются: малое быстродействие; ограниченный срок службы и малая надежность работы моста, вследствие наличия подвижных элементов; относительно большая сложность и стоимость.

Значительно лучше использовать для этой цели электрически управляемое сопротивление. В качестве последнего наиболее целесообразно применение фотосопротивления в сочетании с лампочкой накаливания.

При этом элементная схема устройства для разбраковки примет вид рис. 3.

Напряжение с выхода мостовой измерительной схемы подается на электронный усилитель 1. После усиления оно подается на фазочувствительные детекторы 2 и 5. Управляющее напряжение детектора 2 сдвинуто по отношению к вектору напряжения питания моста \dot{U}_{ab} на 90° фазосдвигающей цепью 3.

Управляющее напряжение детектора 5 совпадает по фазе с \dot{U}_{ab}

Таким образом, напряжение на выходе фазочувствительного детектора 2 определяется проекцией \dot{U}_{cd} на \dot{U}_{κ} , т. е. добротностью Q_{x} , а на выходе детектора 5-проекцией U_{cd} на U_{ab} , т. е. модулем Z_{x} .

Уменьшение напряжения $Re\dot{U}_{cd}$ достигается тем, что напряжение $\kappa Re\dot{U}_{cd}$ с выхода детектора 5 подается в цепь обратной связи 7, которая и регулирует положение точки d.

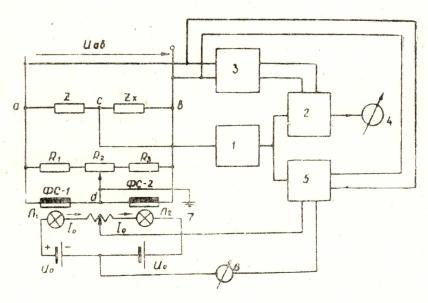


Рис. 3.

По существу мы имеем статическую систему авторегулирования положения точки d. Пусть, например, $Z_x < Z$. На выходе детектора 5 появится напряжение $\kappa Re\dot{U}_{cd}$, вызывающее в цепи 7 ток I_y . При этом через лампочку \mathcal{I}_1 будет протекать ток $I_0+\frac{1}{2}I_y$, а через \mathcal{I}_2-I_y . Сопротивление Φ C-1 уменьшится, а Φ C-2 увеличится. Точка d0 переместится к точке f (рис. 2). В результате проекция вектора напряжения небаланса на вектор \dot{U}_{ab} станет равной $\frac{Re\dot{U}_{cd}}{\kappa_{\text{сист.}}}$, где $\kappa_{\text{сист.}}$ общий коэффициент усиления системы авторегулирования.

Поскольку величина $\frac{Re\dot{U}_{cd}}{\kappa_{\text{сист.}}}$ может быть доведена до весьма малой величины, то точность контроля Q_x при этом практически ограничивается лишь относительной чувствительностью S' указателя.

Величина тока I_y является функцией $\frac{\Delta Z}{Z}$, а направление тока I_y позволяет судить о знаке отклонения модуля проверяемого комплексного сопротивления от номинального значения. Следовательно, измеряя электроизмерительным прибором 6 ток в цепи обратной связи 7, мы можем судить о величине Z_x .

Погрешность измерения Z_x равна

$$\delta_z = \sqrt{\left(rac{Re\dot{U}_{cd}}{U_{ab}\kappa_{ ext{chct.}}}\cdotrac{\Delta Z}{Z}
ight)^2 + \left(rac{Q_{ab}\dot{U}_{cd}}{U_{ab}}
ight)^2 + \left(\delta_6rac{\Delta Z}{Z}
ight)^2 + \delta_M^2 + \delta_{\Phi c}^2} pprox 2}$$

$$\approx \sqrt{\left(\varphi \frac{Q_x - Q}{4Q^2}\right)^2 + \left(\delta_6 \frac{\Delta Z}{Z}\right)^2 + \delta_M^2 + \delta_{\phi c}^2}, \tag{4}$$

где ф-погрешность вектормерного указателя по углу

$$(\varphi \approx 2 \div 3^{\circ});$$

 δ_6 — погрешность электроизмерительного прибора 6

$$(\delta_6 \approx 1.5 \%);$$

 δ_M —погрешность метода измерения Z_x ; (2);

офс — погрешность от нестабильности светового потока лампочек накаливания и сопротивления ФС.

Лампочки накаливания и фотосопротивления (после предварительной тренировки в течение $200\div300$ часов) обладают высокой стабильностью параметров. По предварительным данным, изменения параметров лампочек накаливания СН-3 и фотосопротивлений ФС-К2Н (шунтирующие сопротивления R_1 и R_3 отсутствовали) за 50 часов непрерывной работы при нестабильности U_0 , равной 0,1%, приводили к на-

пряжению небаланса $Re\dot{U}_{cd}$, соответствующему $\frac{\Delta Z}{Z} = 0.1 \%.$ 1)

При
$$Q \gg 4$$
, $\frac{Q_x - Q}{Q} = |0,4|$; $\frac{\Delta Z}{Z} = |0,2|$, $\delta_z < 0.5$ %.

Таким образом, описанный выше относительно простой мост позволяет с высокой точностью проводить контроль добротности и модуля комплексного сопротивления.

Следует указать, что в случае необходимости регистрации отклонений модуля Z_x от Z, в качестве измерителя 6 может быть приме-

нен самопишущий миллиамперметр.

Благодаря указанным выше достоинствам и отсутствию в мосте движущихся элементов он может найти широкое применение в контрольно-измерительной технике и автоматике.

 $^{^{1}}$) При необходимости контролировать малые относительные изменения Z_x от Z фотосопротивления можно зашунтировать малыми сопротивлениями R_1 и R_3 и нестабильность схемы соответственно уменьшится.