ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Tom 117 1963

цифровая управляющая система для фрезерного Станка

Б. А. ЛАПИН

(Представлено научным семинаром электромеханического факультета)

Автоматизация производственных процессов является основным направлением технического прогресса во всех отраслях промышленности. В настоящее время развитие техники, в частности металлообрабатывающей, достигло такого уровня, что во многих случаях дальнейшее повышение производительности, увеличение скорости и точности обработки ограничивается физическими возможностями операторов, следящих за ходом технологического процесса и управляющих техникой. Полное исключение людей от непосредственного участия в технологическом процессе требует применения специальных автоматических управляющих систем.

Как известно, эволюция систем управления металлорежущими станками привела к созданию производительных копировальных автоматов, работающих по шаблонам. Однако этому способу управления присущи недостатки, связанные с ограниченной точностью шаблонов

и трудоемкостью их изготовления.

Прогресс в области автоматики, теории информации и вычислительной техники привел к созданию систем цифрового программного управления, строящихся на электронных вычислительных элементах дискретного действия. Программа для таких систем управления задается аналитически, в виде цифровой модели изделия, состоящей из координат последовательных точек обработки. Цифровой метод управления позволяет задавать программу принципиально с любой степенью точности. Трудоемкость выполнения цифровой модели изделия также гораздо наже дем грометринеской

лия также гораздо ниже, чем геометрической.

Процесс изготовления изделия на станке с цифровым программным управлением распадается на несколько характерных этапов, не зависящих от конкретной структуры системы управления (рис. 1). Источником информации об изделии является технологическое задание. Оно должно содержать данные о размерах и форме детали, о допусках на обработку, о материале заготовки, о размере и типе инструмента, о режимах резания. В результате математической обработки этой технологической информации получается математическая модель изделия, записанная в виде приращений, которые должны получать координаты центра фрезы в процессе обработки. Заключительными этапами программирования является кодирование матема-

тической информации и запись ее на программную ленту. Система кодирования определяется логической структурой системы управления и не изменяется при обработке различных изделий. Программная лента содержит в закодированном виде полный алгоритм технологии обработки изделия и является задающим документом для системы управления. Последним этапом процесса изготовления изделия является отработка программы системой управления и станком.

Наиболее полно преимущества цифрового управления реализуются при единичном и мелкосерийном производстве деталей сложной конфигурации. В этом случае экономичность станков с цифровым

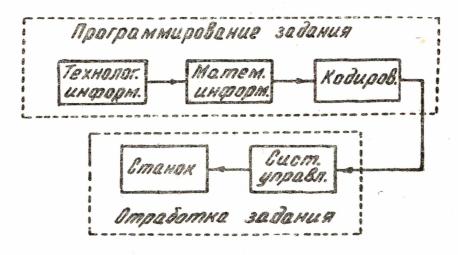
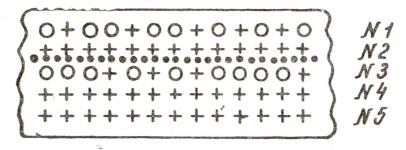
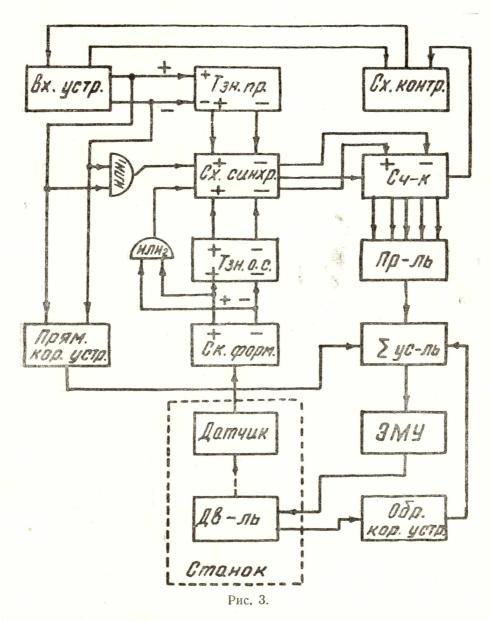


Рис. 1.

программным управлением оказывается в десятки раз выше, чем копировальных автоматов.

Оснащение действующих металлорежущих станков системами цифрового программного управления значительно расширяет их технологические возможности. Ниже описывается двухкоординатная система для управления копировально-фрезерным станком модели 6441А. При модернизации станок подвергся минимальной переделке, которая заключалась в установке датчиков перемещения и штепсельного переключателя режима работы "копирование—программное управление". Управляющая часть системы собрана на электронных лампах и размещается в приставном шкафу. Для записи и считывания




Рис. 2.

программы применяются стандартная телеграфная аппаратура—перфоратор, трансмиттер. В качестве программоносителя используется также стандартная пятидорожечная телеграфная лента. Участок программной ленты показан на рис. 2. Команды на перемещение по ко-

ординате "X" для положительного направления записываются на дорожке № 1, для отрицательного направления—на дорожке № 2. Дорожки № 3 и № 4 используются для координаты "Y", а дорожка № 5 — для команды "Стоп". При записи программы на программную ленту применяется единичный код, при котором величина перемещения по координате пропорциональна количеству пробитых отверстий, а скорость перемещения—их частоте.

Структурная схема системы

Структурная схема для одной координаты приведена на рис. 3. В основу цифровой следящей системы положена схема, при которой

сигнал рассогласования вырабатывается в реверсивном счетчике, сравнивающем количество импульсов, поступающих от программы с импульсами, поступающими по цепи обратной связи. Импульсы программы поступают на счетчик через схему "ИЛИ₁" и схему син-

хронизации. Эти же импульсы в зависимости от запрограммированног направления перемещения устанавливают триггер "Т_{зн. пр.}" или в положение "+", или в положение "—". Коммутация счетчика на сложение или на вычитание производится схемой синхронизации так, что импульсы программы учитываются счетчиком в соответствии с положением триггера "Т_{зн. пр.}". Точно так же учет импульсов обратной связи производится в соответствии с положением триггера "Т_{зн. обр. св.}". Таким образом, в каждый момент времени в счетчике вырабатывается разница между заданным программой и фактическим перемещением исполнительного органа. Этот сигнал рассогласования выдается счетчиком в форме четырехразрядного двоичного числа (положительного или отрицательного) и подается на преобразователь цифра-ток. Сигнал рассогласования, усиленный суммирующим усилителем и ЭМУ, воздействует на двигатель.

Перемещение исполнительного органа измеряется фотоэлектрическим датчиком. Для формирования стандартных по форме импульсов обратной связи служит схема формирования. В ее функции также

входит определение знака обратной связи.

Работа схемы синхронизации и реверсивного счетчика рассматривается ниже.

Схема синхронизации и реверсивный счетчик

Счетчик цифровой следящей системы собран по последовательной схеме и содержит пять разрядов (рис. 4). Связь между разрядами счетчика осуществляется через управляемые клапаны. При открытых клапанах " K_+ " счетчик работает на сложение, при открытых клапанах

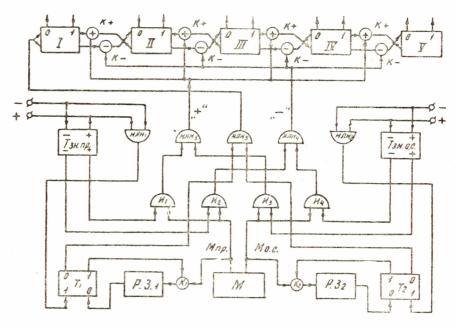


Рис. 4.

"К_"— на вычитание. Напряжение, управляющее клапанами, поступает с выхода схемы синхронизации. Схема синхронизации служит также для разнесения импульсов программы и обратной связи на время, большее разрешающего времени счетчика. В ее состав входят мультивибратор "М", электронное реле задержки "Р 3_1 " и "Р 3_2 ", два

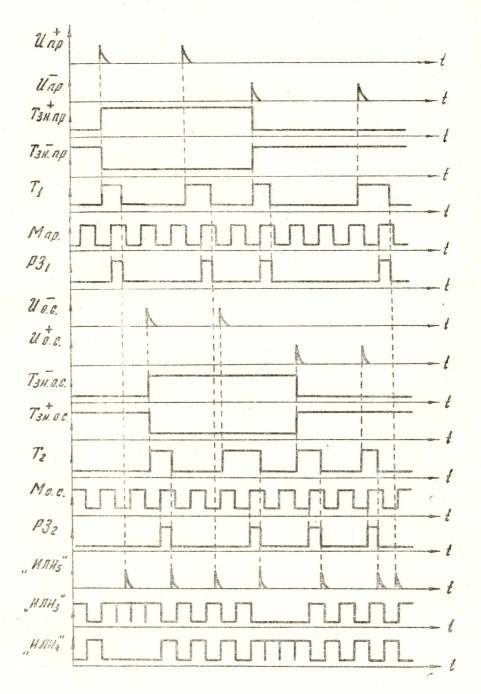


Рис. 5.

триггера " T_1 " и " T_2 ", и логические элементы "ИЛИ $_1$ " — "ИЛИ $_5$ ", $"H_1" - "H_4"$

Работой всей схемы управляет мультивибратор "М". Его частота выбирается из условия $5\,f_{\rm пр.\ Make.}\!<\!F_{\rm M}\!<\!\frac{1}{5\,t_{\rm pasp.}}$

где $F_{\rm M}$ — частота мультивибратора.

 $f_{\rm пр.\ Makc.}$ — максимально возможная частота следования программных импульсов.

 $t_{\rm pasp}$ — разрешающее время счетчика.

Временная диаграмма работы элементов схемы синхронизации приведена на рис. 5. В зависимости от направления перемещения импульс программы поступает или на вход "+", или на вход "-" триггера " $T_{\text{зн. пр.}}$ " и устанавливает его в соответствующее положение. Этот же импульс через схему " $\mathcal{U}\mathcal{J}\mathcal{U}_1$ " поступает на вход "1" триггера T_1 и устанавливает его в положение "1". Высокое положительное напряжение с выхода "1" этого триггера открывает клапан " K_1 ", через который реле задержки " $P3_1$ " соединяется с мультивибратором. Ближайшим положительным импульсом с выхода мультивибратора " $M_{\rm np.}$ " запускается реле " $P3_1$ ". Выдержка времени " $P3_1$ " выбирается

по условию $\frac{1}{4}T_{\rm M} < T_{\rm P.3} < \frac{1}{2}T_{\rm M}$. Этим же положительным импульсом

мультивибратора включаются схемы совпадения " \mathcal{U}_1 " и " \mathcal{U}_2 ". В зависимости от положения триггера $T_{\text{зн. пр.}}$ высокое напряжение появляется или на выходе схемы " U_1 ", или " U_2 ". Через схемы " U_1 И $_3$ ", " U_1 И $_4$ " это напряжение подается на клапаны счетчика. По окончании выдержки " $P3_1$ " происходит установка триггера " T_1 " в положение "O". При этом триггер " T_1 " выдает через схему " $U\Pi U_5$ " на вход счетчика один импульс. В это время открыты или клапаны " K_+ ", или " K_- " в зависимости от положения триггера " $T_{3\text{H. пр.}}$ ". Таким образом, импульсы программы будут учитываться в соответствии с положением триггера " $T_{\rm зн.\, пр}$ ·".

Вторая половина схемы $(T_2, P3_2, H_3, H_4, HJIH_2, T_{3H.o.c.})$ для сигналов обратной связи управляется напряжением мультивибратора

с выхода " $M_{\text{o. c.}}$ " и работает аналогично.

Схемы синхронизации, построенные по описанному выше принципу, содержат минимум электронного оборудования и могут работать на частотах до нескольких кгц.

В статье описана система цифрового управления к фрезерному станку. Подобные системы с некоторыми несущественными изменениями могут быть использованы для управления токарными, револьверными, расточными, сверлильными, шлифовальными станками и другим самым разнообразным металлорежущим оборудованием.

Использование цифровых управляющих систем в заводской практике повышает культуру производства, приносит большой экономический эффект и является крупным шагом к полной автоматизации

универсального металлорежущего оборудования.

Поступила в редакцию в мае 1962 г.