ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 250

1975

ПОЛУЧЕНИЕ КЕРАМИКИ С ДИОПСИДОВОЙ КРИСТАЛЛИЧЕСКОЙ ФАЗОЙ НА ОСНОВЕ ТРЕМОЛИТА

П. Г. УСОВ, З. С. КОНОВАЛОВА, В. И. ВЕРЕЩАГИН

(Представлена семинаром кафедр неорганической химии ХТФ)

В предлагаемой работе рассматривается вопрос получения керамики с диопсидовой кристаллической фазой.

Отечественная и зарубежная научная литература содержит лишь отрывочные сведения данного направления. В Японии исследован спеченный диопсидовый фарфор, который синтезирован из морской воды. И в то же время мировая практика имеет большой опыт использования метасиликата магния в стеатитовой керамике.

Метасиликат магния (клиноэнстатит) $MgSiO_3$ — диопсид $CaMg[Si_2O_6]$ являются крайними членами ряда твердых растворов с содержанием CaO от 0,0 до 26 весовых процентов. Небольшие примеси окиси кальция в стеатитовой керамике весьма нежелательны, так как они стимулируют превращения одной полиморфной формы в другую при низких температурах, что приводит к старению керамики. Диопсид же не имеет полиморфных форм, тем самым исключается старение керамики с данной кристаллической фазой. Диопсид имеет малый коэффициент термического расширения (60—65 · 10^{-7°}C⁻¹), следовательно, керамика с диопсидовой кристаллической фазой должна быть термостойкой.

Нами в практической работе для получения высокочастотной керамики с диопсидовой кристаллической фазой использован тремолит Алгуйского месторождения.

Тремолит — минерал с естественным сочетанием окислов кальция и магния, поэтому синтез диопсида из этого минерала осуществляется проще. Химический состав тремолита удовлетворяет требованию к сырью для производства высокочастотных диэлектриков (табл. 1).

Соотношение окислов магния и кальция в тремолите — 2CaO × ×5MgO×8SiO₂×H₂O не отвечает составу диопсида, поэтому была произведена корректировка. Необходимое количество кальция вводилось карбонатом.

Керамика готовилась параллельно как на предварительно синтезированном из тремолита диопсиде, так и из валовой шихты, в которую помимо тремолита с карбонатом кальция вводили плавни — бентонит и карбонат бария из расчета получения около 30% стекловидной фазы барий — алюмосиликатного состава.

Компонентный состав массы следующий: Алгуйский тремолит — 46,2%; бентонит — 14,6%; углекислый барий — 12,4%; углекислый кальций — 20,8%; песок Туганского месторождения — 6,2%.

Химический состав массы: SiO₂ — 53,6%; CaO — 18,9%; MgO — 13,5%; BaO — 11,3%; Al₂O₃ — 2,7%.

Керамика для исследований готовилась по спековой технологии с оформлением деталей методом горячего литья под давлением на серийных полуавтоматах. Анализируя полученный экспериментальный мате-

ируя полученный экспериментальный мате Таблица 1

Фракция тремолита, мм	nnn	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO
10	1,4	62,00	1,22	0,18	9,94	25,37
10—5	2,0	62,14	0,82	0,18	11,06	24,14
5—1	2,2	62,34	1,07	0,18	10,36	24,02
1	2,36	62,28	1,09	0,21	9,17	25,39
Усредненный тремолит	2,0	62,0	1,0	0,2	10,0	25,0
Теоретический тремолит	2,24	59,1		_	13,8	24,8

Химический состав тремолита

риал, можно отметить следующее: спекание происходит при температурах 1230—1250° С.

Изделия обжигались в две стадии — предварительный обжиг проводился в засыпке по режиму утильного обжига в муфеле, а окончательный обжиг — в электрической печи с силитовым нагревателем с конечной двухчасовой температурной выдержкой (табл. 2). Температура спе-

Таблица 2

Температурный режим обжига изделий

утильный обжиг

Время в час	1	2	3	4	5	6	7	8	9	10	11	12	13
T-pa °C	40	100	140	180	240	280	300	400	5 0 0	700	800	900	900

ОКОНЧАТЕЛЬНЫЙ ОБЖИГ

Время в час	1	2	3	4	5	6	7	8	9	10
T-pa °C	100	400	700	900	1000	1100	1150	1200	1250	1250

кания определялась на основании зависимости усадки, водопоглощения, прочности при сжатии от температуры (рис .1). Более плавную кривую спекания дает керамика, синтезированная на сыром тремолите.

Данная керамика не обнаруживает изменения фазового состава как после механических, так и после термических воздействий.

Фазовый состав исследовался с помощью рентгенографического анализа, выполненного на дифракционной установке УРС-50-И с медным антикатодом. Испытания показали повышенную термостойкость в сравнении со стеатитовой керамикой. Термостойкость оценивалась методом теплосмен, сущность которого заключается в быстром нагревании изделий до температуры 300° С с последующим охлаждением в проточной воде (рис. 2).

Таблица З

	AN MI INI	ичес	пая	yci	UNAN	IDUC	ID	
NAME AND	Contraction of the owner owner owner owner own	TO MANUAL PROPERTY AND INCOME.			CONTRACTOR OF STREET, STRE	Cold Statement Statement	And in case of	-

Наименование показателей	Образцы на сыром тремолите	Образцы на синтезиро- ванном диопсиде			
Растворимость в воде, %	0,044	0,033			
Кислотораствори- мость, %					
HC1	0,2	0,18			
H ₂ SO ₄	0,02	0,02			
Щелочераствори- мость, %					
NaOH	0,74	0,57			
Na ₂ CO ₃	0,50	0,34			

Таблица 4

Диэлектрическая проницаемость и тангенс угла диэлектрических потерь при температуре 20°Сf=10⁵ гц

№ образца ε, tgб · 104	1	2	3	4	5	Среднее значение
εI	7,7	7,3	7,8	7,55	7,45	7,56
tg б1	5,5	5,5	5,5	5,5	5,5	7,5
ε2	7,5	7,75	7,7	7,7	7,6	7,65
tg 62	5,4	5,3	5,3	5,3	5,4	5,3

 ϵ_1 и $tg\delta_1$ — для проб на синтезированном диопсиде. ϵ_2 и $tg\delta_2$ — для проб на сыром тремолите.

Новая керамика обладает высокой механической прочностью, предел прочности при изгибе равен 1800—1900 кг/см². Химическая стойкость диопсидовой керамики к воде, кислотам и щелочам выше, чем у подобной стеатитовой керамики. (Опре-

деление химической стойкости проводилось по методу Тернера) (табл. 3).

Средний коэффициент линейного теплового расширения в температурном интервале 20-800°С равен 70—75 10-7°С-1.

Изделия с диопсидовой кристаллической фазой показали высодиэлектрические свойства кие (табл. 4). Электросопротивление ом . см в зависимости от температуры выражается данными: при $20^{\circ}C - 1.5$ 10^{14} , $100^{\circ}C = 1.5$ 10^{14} , 400° C-2,1 1014.

Результаты исследований показывают возможность применения тремолита Алгуйского месторождения для получения нового вида высокочастотной керамики с хорошими диэлектрическими и механиче-

Рис. 2. Зависимость осж от числа теплосмен: верхняя кривая — образцы на сыром тремолите; средняя кривая --образцы на синтезированном диопсиде; нижняя кривая — образцы стеатитовой керамики П-5

скими свойствами и несклонную к старению.

ЛИТЕРАТУРА

1. В. Эйтель. Физическая химия силикатов. Изд. ИЛ., М., 1967.

2. У. Д. Кингери. Введение в керамику. Промстройиздат, М., 1964. 3. В. Г. Куколев. Химия кремния и физхимия силикатов. Изд. «Высшая школа», M., 1956.

4. П. П. Будников, И. А. Булавин и др. Новая керамика. Изд. лит-ры по строительству, М., 1969.