УДК 665.61

АЗОТСОДЕРЖАЩИЕ ОСНОВАНИЯ ДИЗЕЛЬНОЙ ФРАКЦИИ 140...350 °C ТОВАРНОЙ СМЕСИ ЮРСКИХ НЕФТЕЙ ЗАПАДНОЙ СИБИРИ ДО И ПОСЛЕ ЕЕ ГИДРООЧИСТКИ

Н.Н. Герасимова, Т.А. Сагаченко*

Томский политехнический университет *Институт химии нефти СО РАН, г. Томск E-mail: azot@ipc.tsc.ru

Изучено распределение низкомолекулярных азотсодержащих оснований в исходной и гидроочищенной дизельных фракциях. Показано, что в процессе гидроочистки достигается частичное удаление сильноосновных азотсодержащих соединений. В гидроочищенном продукте отсутствуют высокополярные основания и существенно ниже, чем в исходном сырье, содержание оснований с сильно экранированным атомом азота. В составе сильноосновных соединений исходной и гидрообработанной дизельных фракций установлены $C_3 - C_9$ - элкилхинолины и $C_2 - C_4$ - алкилбензохинолины. Процесс гидроочистки сопровождается увеличением доли слабо алкилированных хинолинов $C_3 - C_4$ и снижением относительного количества хинолинов с более развитым алкильным замещением ($C_5 - C_9$). Алкилбензохинолины подвергаются перераспределению в меньшей степени. В исходной и гидрообработанной дизельных фракциях доминируют C_3 - бензохинолины. В составе алкилбензохинолинов обоих дистиллятов идентифицированы 2,3- и 2,4-диметил-бензо(h)хинолины и 2,4,6-триметилбензо(h)хинолин. Высокая стабильность этих структур может быть связана со стерическим затруднением атома азота из-за наличия метильного заместителя в α -положении.

Введение

Для получения высококачественных дизельных топлив, отвечающих современным конструкционным особенностям двигателей и экологическим требованиям, прямогонные дистилляты подвергают процессам каталитического облагораживания, главным образом, гидроочистке [1, 2]. При гидроочистке из дизельных фракций удаляются органические соединения серы и азотсодержащие гетероциклические компоненты [1–3]. Процесс деазотирования нельзя рассматривать однозначно. С одной стороны, разрушение азотистых соединений (АС) играет положительную роль, так как, аналогично сернистым компонентам, они ухудшают эксплуатационные характеристики топлив, а продукты их сгорания отравляют окружающую среду и вредят здоровью человека [1–3]. С другой стороны, присутствие азотистых оснований (АО) в углеводородных средах может способствовать стабилизации нефтепродуктов, так как известно, что они проявляют антикоррозионные и антиокислительные свойства [4-6]. Поведение отдельных АО, в частности их устойчивость к разрушению, зависит от структурных характеристик этих соединений [5]. В связи с этим представляют интерес работы, направленные на изучение изменений состава АО в процессе гидроочистки.

В статье приводятся результаты сравнительного исследования низкомолекулярных АО в исходной и гидроочищенной дизельных фракциях.

Экспериментальная часть

Исследования выполнены на широкой фракции 140...350 °C, полученной на Каргасокской нефтеперегонной установке из товарной смеси юрских нефтей, добытых в Томской области.

Содержание азоторганических оснований ($N_{\text{осн.}}$) определяли методом неводного потенциометрического титрования раствором хлорной кислоты в диоксане [7].

АО экстрагировали раствором серной кислоты в разбавленной уксусной кислоте при соотношении реагентов H_2SO_4 : CH_3COOH : $H_2O=25:37,5:37,5$ [8, 9]. В соответствии с методикой выделенные соединения (K — концентрат) представлены высокоароматичными сильноосновными компонентами.

Основания К разделяли на оксиде алюминия, деактивированном 3,75 об. % Н₂О [10]. Такой прием позволяет дифференцировать АО по хроматографической подвижности, которая согласно [11] зависит от степени экранирования электронной пары атома азота в молекулах основных АС. Элюирование осуществляли бинарными смесями растворителей, для приготовления которых использовали н-гексан $(\varepsilon^0=0.01)$, четыреххлористый углерод $(\varepsilon^0=0.18)$, хлороформ (ε^0 =0,40) и этанол (ε^0 =0,88). Объемные соотношения компонентов в подвижной фазе с заданной элюирующей силой рассчитывали по [12]. Контроль за процессом разделения вели по величине оптической плотности на спектрофотометре «Specol-21» при λ =325 нм. Получали фракции Φ_1 , Φ_2 и Φ_3 , элюируемые системами растворителей с ε_{AB}^{0} =0,05, 0,35 и 0,65 соответственно.

Индивидуальный состав АО определяли методом хромато-масс-спектрометрии на приборе R10-10C фирмы NERMAG (Франция) с системой сбора и обработки данных Spectral-500. Разделение основных соединений проводили на кварцевой капиллярной колонке $30,0\times0,32$ мм с неподвижной фазой SE-54, с гелием в качестве газа-носителя. Масс-спектры получали при энергии ионизации 70 эВ. Температура ионизационной камеры — 230 °C; время развертки спектра — 0,4 с; диапазон регистрируемых масс — 33-450. Идентификацию АО осуществляли путем сравнения со спектрами, полученными на однотипных фазах [13, 14].

Гидроочистку дизельной фракции проводили на промышленном катализаторе РК-442 при температуре 390 °С, давлении 20 атм, объемной скорости потока сырья 2 ч^{-1} , соотношении водород/сырье $400 \text{ нм}^3/\text{м}^3$.

Результаты и их обсуждение

По данным неводного потенциометрического титрования содержание $N_{\text{осн.}}$ в исходной дизельной фракции составляет 0,006 мас. %, в гидрообработанной — 0,002 мас. %. Снижение концентрации основного азота свидетельствует о частичном (на 67 %) удалении АО в условиях гидроочистки.

С помощью кислотной экстракции из исходного и гидрообработанного дистиллятов выделено, соответственно, 83,5 и 87,8 отн. % АО, табл. 1. Из этих данных следует, что основная часть АО обоих дистиллятов представлена низкомолекулярными высокоароматичными соединениями. При этом доля указанных соединений в составе оснований гидроочищенного продукта несколько выше, чем в исходной дизельной фракции.

Таблица 1. Распределение азотсодержащих оснований исходного и гидроочищенного дистиллятов по продуктам выделения и хроматографического фракционирования

Продукт ($\mathcal{E}^{^{0}}_{^{AB}}$)	Исходный дистиллят			Гидроочищенный дистиллят		
	Выход, мас. %	Содержание <i>N</i> _{осн.} , %		Выход,	Содержание <i>N</i> _{осн.} , %	
		мас.	OTH.	Mac. 70	мас.	OTH.
K	0,111	4,51	83,5	0,032	5,49	87,8
Φ ₁ (0,05)	0,041	4,43	30,3	0,002	5,10	5,1
Φ ₂ (0,35)	0,062	4,76	49,2	0,030	5,51	82,7
Ф₃ (0,65)	0,008	3,00	4,0	нет	-	-

Результаты разделения на оксиде алюминия свидетельствуют о том, что среди выделенных оснований присутствуют соединения с различной хроматографической подвижностью. Соотношение таких соединений в исходном и гидроочищенном дистиллятах не одинаково. Как следует из данных табл. 1, АО исходного дистиллята распределяются по трем хроматографическим фракциям. Большая их часть (49,2 отн. %) переходит во фракцию Φ_2 С наименее удерживаемыми соединениями фракции Φ_1 связано 30,3 отн. % основного азота. На долю наиболее полярных оснований (Φ_3) приходится только 4,0 отн. % АО. Соединения, выделенные из гидроочищенного дистиллята, распределяются по двум фракциям, табл. 1. В процессе гидроочистки исчезают полярные соединения Φ_3 . Резко (до 5,1 отн. %) снижается доля основного азота, приходящегося на соединения фракции Φ_1 . Практически все основания (82,7 отн. %) элюируются во фракцию Φ_2 .

Снижение выхода фракции Φ_1 с 0,041 мас. % в исходном дистилляте до 0,002 мас. % в гидроочищенном свидельствует о том, что составляющие ее основания исходного дистиллята, преимущественно представлены структурами, которые легко подвергаются деазотированию. Удаление сильнополярных соединений фракции Φ_3 , вероятнее всего, связано с их сорбцией на катализаторе. В составе таких соединений могут присутствовать гибридные структуры, в частности азотсеросодержащие [9, 15], способные вступать во взаимо-

действие с активными центрами каталитической системы [1, 3]. Сравнительно малое изменение выхода фракции Φ_2 (с 0,062 до 0,030 мас. %) говорит о том, что в ее составе преобладают основания с относительно высокой устойчивостью к гидрогенизации [1, 13].

Методом хромато-масс-спектрометрии установлено, что среди оснований фракций Φ_2 обоих дистиллятов присутствуют алкилхинолины и алкилбензохинолины (табл. 2, 3).

В обоих образцах алкилхинолины представлены гомологами C_3-C_9 (m/z=171–255) (табл. 2). Для исходного и для гидроочищенного дистиллятов отмечено повышенное содержание C_4-C_6 -алкилхинолинов. Однако максимумы в их распределении различны. До гидроочистки в составе алкилхинолинов преобладают гомологи C_6 . Во фракции Φ_2 гидрообработанного продукта максимальное содержание приходится на гомологи C_4 . Кроме того, в гидроочищенном дистилляте выше, чем в исходном, относительное количество C_3-C_4 - и ниже доля C_5-C_9 -алкилхинолинов.

Таблица 2. Состав алкилхинолинов фракции Φ_2 исходного и гидроочищенного дистиллятов

Молеку- лярная масса	Брутто формула	Структура*	Содержание относительно суммы алкилхинолинов Φ_2 дистиллята, %		
			Исходного	Гидроочищенного	
171	C ₁₂ H ₂₁ N	С ₃ -хинолины	4,1	10,1	
185	C ₁₃ H ₂₃ N	С ₄ -хинолины	19,1	29,7	
199	C ₁₄ H ₂₅ N	С5-хинолины	21,1	18,4	
213	C ₁₅ H ₂₇ N	С ₆ -хинолины	29,1	24,1	
227	C ₁₆ H ₂₉ N	С ₇ -хинолины	14,5	10,0	
241	C ₁₇ H ₃₁ N	С ₈ -хинолины	6,3	4,0	
255	C ₁₈ H ₃₃ N	С ₉ -хинолины	5,7	3,7	

*данные [13]

Алкилбензохинолины в обоих дистиллятах представлены (таблица 3) гомологами C_2 – C_4 (m/z=207–235) с максимальным содержанием C_3 -алкилбензохинолинов. Отличия между образцами заключаются в том, что в гидрообработанной фракции, по сравнению с исходной, выше доля C_2 -алкилбензохинолинов и ниже относительное количество структур с более развитым алкильным замещением (C_4 -алкилбензохинолинов).

На примере распределения C_2 - и C_3 -алкилбензохинолинов показано, что условия гидроочистки не влияют на изомерный состав AO, табл. 3. Сравнение с литературными данными [14] позволило установить, что серии m/z=207, 221 в обоих дистиллятах представлены только метилзамещенными бензохинолинами. В исходной и гидрообработанной дизельных фракциях определено по шесть изомеров диметилбензохинолинов и по одинадцать изомеров триметилбензохинолинов. Среди диметилбензохинолинов в обоих образцах достоверно идентифицированы 2,4- и 2,3-диметилбензо(h)хинолины, среди триметилбензохинолинов — только 2,4,6-триметилбензо(h)хинолин. Присутствие этих изомеров в исходной и гидрообработанной дизельных фракциях пра-

Таблица 3. Состав алкилбензохинолинов фракций Φ_2 исходного и гидроочищенного дистиллятов

			Солержа	HINE OTHOCIA-	
Молеку-	Брутто		Содержание относительно суммы ал-		
			килхинолинов Φ_2		
лярная	фор-	Структура*	дистиллята, %		
масса	мула		Исход-	Гидроочи-	
			ного	щенного	
207	C ₁₅ H ₁₃ N	С2-бензохинолины:			
207	C ₁₅ П ₁₃ IN	_	25,5	31,5	
		Диметилбензохинолин	0,9	1,3	
		Диметилбензохинолин	1,4	1,0	
		Диметилбензохинолин	3,2	3,6	
		2,4-диметил-бен-	11,9	16,4	
		зо(h)хинолин	11,3	10,4	
		2,3-диметил-бен-	7,0	7,7	
		зо(h)хинолин	7,0	/,/	
		Диметилбензохинолин	1,1	1,5	
221	C ₁₆ H ₁₅ N	С₃-бензохинолины:	44,3	41,7	
		Триметилбензохинолин	0,6	0,4	
		Триметилбензохинолин	1,2	1,4	
		Триметилбензохинолин	1,1	1,0	
		Триметилбензохинолин	3,3	2,0	
		Триметилбензохинолин	6,4	6,3	
		Триметилбензохинолин	5,0	4,6	
		Триметилбензохинолин	6,6	5,9	
		2,4,6-триметил-бен-	7.0	7.0	
		зо(h)хинолин	7,6	7,8	
		Триметилбензохинолин	7,7	7,5	
		Триметилбензохинолин	3,7	3,6	
		Триметилбензохинолин	1,1	1,3	
235	C ₁₇ H ₁₇ N	С ₄ -бензохинолины	30,2	26,8	

^{* -} данные [14]

вомочно, так как азаарены, имеющие метильный заместитель в α -положении к атому азота, устойчивы к гидрогенизации [13]. Среди идентифицированных изомеров доминирует 2,4-диметилбензо(h)хинолин,

СПИСОК ЛИТЕРАТУРЫ

- Багрий Е.И., Нехаев А.И. Нефтехимия и защита окружающей среды (обзор) // Нефтехимия. – 1999. – Т. 39. – № 2. – С. 83–97.
- Величкина Л.М., Восьмериков А.В. Современное состояние проблемы производства малосернистых моторных топлив в мире и пути ее решения // Химическая технология. – 2005. – № 10. – С. 7–15.
- Schmitter J.M., Ignatiadis I., Dorbon M., Arpino P.J., Guiochon G., Toulhoat H., Huc A. Identification of Nitrogen Bases in a Coker Gas Oil and Influence of Catalytic Hidrotreatment on Their Composition // Fuel. – 1984. – V. 63. – P. 557–564.
- Давыдов П.И., Большаков Г.Ф., Глебовская Е.А. Исследование влияния азотистых оснований на термоокислительную стабильность топлив при повышенных температурах // Химия и технология топлив и масел. – 1962. – № 10. – С. 20–26.
- Большаков Г.Ф. Азоторганические соединения нефти. Новосибирск: Наука, 1988. 215 с.
- Герасимова Н.Н. Азотистые основания самотлорской нефти: Дис. ... канд. хим. наук. – Томск, 1988. – 179 с.
- Безингер Н.Н., Гальперн Г.Д. Функциональный анализ азотистых соединений нефти // Методы анализа органических соединений нефти, их смесей и производных: Сб. 1. М.: Изд-во АН СССР, 1960. С. 141–169.
- Герасимова Н.Н., Сагаченко Т.А., Бейко О.А., Огородников В.Д. Выделение и фракционирование азотистых оснований из нефти // Нефтехимия. – 1987. – Т. 27. – № 1. – С. 32–38.

табл. 3. В гидрообработанном дистилляте его относительное содержание несколько выше (16,4 отн. %), чем в исходном (11,9 отн. %). Существенных различий в относительном количестве 2,3-диметилбензо(h)хинолина (7,7 и 7,0 отн. %) и 2,4,6-триметилбензо(h)хинолина (7,8 и 7,6 отн. %) в дизельной фракции до и после гидроочистки не наблюдается.

Выводы

Показано, что в условиях гидроочистки из дистиллятной фракции 140...350 °C юрских нефтей Западной Сибири частично (на 67 %) удаляются сильноосновные азотистые соединения. В гидроочищенном продукте отсутствуют высокополярные азотистые основания и существенно ниже, чем в исходном сырье, содержание соединений с экранированным атомом азота. В составе термодинамически стабильных оснований гидрообработанного продукта идентифицированы гомологические серии алкилхинолинов (C_3 – C_9 , m/z=171–255) и алкилбензохинолинов $(C_2-C_4, m/z=207-235)$. Присутствие этих же соединений установлено и в исходном дистилляте. Процесс гидроочистки сопровождается увеличением доли слабоалкилированных алкилхинолинов (С₃-С₄) и снижением относительного количества хинолинов с более развитым алкильным замещением (C_5 – C_9). Алкилбензохинолины подвергаются перераспределению в меньшей степени. В исходном и гидрообработанном дистиллятах доминируют гомологи С₃. В составе алкилбензохинолинов обоих дистиллятов идентифицированы 2,3- и 2,4-диметил-бензо(h)хинолины и 2,4,6-триметилбензо(h)хинолин. Высокая стабильность этих структур может быть связана со стерическим затруднением атома азота из-за наличия метильного заместителя в α -положении.

- Туров Ю.П., Герасимова Н.Н., Сагаченко Т.А., Бейко О.А. Групповой состав низкомолекулярных азотистых оснований самотлорской нефти // Нефтехимия. – 1987. – Т. 27. – № 1. – С. 39–44.
- Сагаченко Т.А., Гришанова Л.А., Герасимова Н.Н., Лукьянов В.И., Сваровская Л.И. Биодеградация азотсодержащих соединений нефти // Химия в интересах устойчивого развития. — 1999. — № 7. — С. 189—193.
- Snyder L.R. Linear elution adsorption chromatography. II. Compound separability with alumina as adsorbent // J. Chromatogr. 1961.
 V. 6. № 1. P. 22–52.
- 12. Лукьянов В.И., Бейко О.А. Анализ нефтяных азотистых соединений по типам методом жидкостной адсорбционной хроматографии с линейным элюированием. // Проблемы химии нефти: Сб. науч. тр. / Под ред. Г.Ф. Большакова. Новосибирск: Наука, 1992. С. 56—64.
- Ignatiadis I., Schmitter J.M., Arpino P.J. Seperation et identification par chromatographie en phase gazeuse et chromatographie en phase gazeuse-spectrometrie de masse de composes azotes dune huile lourde desasphaltee // J. Chromatogr. – 1985. – V. 324. – № 1. – P. 87–111.
- Bakel A.J., Philp R.P. Distribution and quantitation of organonitrogen compounds in crude oils and rock pyrolisates // Org. Geochem.
 - 1990. V. 16. № 1–3. P. 353–367.
- Герасимова Н.Н., Коваленко Е.Ю., Сагаченко Т.А. Распределение и состав азотсодержащих соединений в нефтях нижнесреднеюрских отложений Западной Сибири // Химия в интересах устойчивого развития. 2005. № 13. С. 507–514.