ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМЕНИ С. М. КИРОВА

Tom 254

ВОПРОСЫ МЕТОДИКИ ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ БУРОУГОЛЬНЫХ МЕСТОРОЖДЕНИЙ СИБИРИ

Ф. П. НИФАНТОВ, В. Н. ПУЛЯЕВ, Е. А. ПИСАРЕВ

(Представлена научным семинаром кафедры гидрогеологии и инженерной геологии)

Способ открытой разработки месторождений твердых полезных ископаемых является наиболее экономичным, но требует всесторонних предварительных исследований и прогнозирования инженерно-геологических условий, оказывающих большое влияние на выбор метода и стоимость разработки. Данная проблема и, в частности устойчивость бортов карьеров, приобретает особенно большое значение с увеличением размеров и глубины карьеров. Исключительно крупные карьеры, производительностью до 40—50 млн. тонн угля в год каждый и глубиной до 250 м намечается заложить на ряде буроугольных месторождений Канско-Ачинского бассейна. В связи с этим потребовалось выяснить инженерно-геологические условия месторождений и получить предварительные данные об устойчивости пород в бортах намечаемых карьеров. Эти исследования проводились в период разведки.

Как известно, многие вопросы затрагиваемой проблемы в значительной мере освещены в работах П. Н. Панюкова (1962, 1968), Ю. Н. Малюшицкого (1957), В. Д. Ломтадзе (1952, 1956), Г. Л. Фисенко (1965), Г. Скворцова, Л. И. Романовской (1966), С. П. Прохорова и Е. Г. Качугина (1955), С. Д. Бабушкина (1969) и других исследователей.

Применительно к буроугольным месторождениям Сибири методика инженерно-геологических исследований и прогнозирования устойчивости пород в бортах карьеров разрабатывается в последние годы на кафедре инженерной геологии Томского политехнического института. Основные положения этого метода, примененного в период разведки Итатского, Назаровского, Березовского и других месторождений, сводятся к следующему.

На всех стадиях разведочных работ проводятся инженерно-геологические исследования всего комплекса условий, которые будут оказывать влияние на изменение свойств и устойчивости пород в бортах, отвалах и подошвах намечаемых карьеров. Количество факторов, действующих на условия разработки пород, всегда остается значительным. Поэтому в первую очередь выясняются главные факторы, всесторонние исследования и правильный учет которых позволяют выбирать наиболее простые и эффективные способы вскрытия и эксплуатации месторождений. На ряде буроугольных месторождений Сибири наибольшее влияние при вскрытии карьерами оказывают геологическое строение, водоносность вмещающих пород и угля, прочность и устойчивость всех типов пород и в меньшей степени рельеф, климат и поверхностные воды.

Оказалось, что все изученные месторождения представляют собой брахисинклинальные структуры, выполненные в пределах вскрыши различными осадочными полускальными водоносными породами юры и мела, перекрытыми четвертичными осадками. Прочность и устойчивость пород меняются в широких пределах. В связи с этим сложные и многообразные факторы, которые окажут влияние на работу будущих крупных карьеров, требуют глубокого и стадийного их изучения. По нашей рекомендации инженерно-геологические исследования начинаются на стадии предварительной разведки и продолжаются, включая период

работы карьеров.

На стадии предварительной разведки, одновременно с геологическими исследованиями, подсчетом запасов и оценкой качества полезного ископаемого, исследуются главным образом общие условия вскрытия месторождения. При этом изучается литология, трещиноватость, неоднородность, водоносность, водостойкость, свойства и устойчивость всех типов пород и угля. Одновременно выясняются особенности, развитие и режим подземных и поверхностных вод. По результатам полевых и лабораторных исследований на этой стадии решаются следующие вопросы:

1. Разрабатывается инженерно-геологическая классификация и предварительно оценивается устойчивость и возможная изменяемость

свойств каждого инженерно-геологического вида пород.

2. Составляются гидрогеологическая и инженерно-геологическая карты, разрезы и производится инженерно-геологическое районирование месторождения. Намечаются наиболее благоприятные участки для первоочередной разработки.

3. Определяются площади детальной разведки для первоочередных карьеров. Одновременно выбираются строительные площадки для горо-

да, заводов, тепловых станций и других сооружений.

Прочность и устойчивость пород на этой стадии оценивается, главным образом, в поле по данным буримости, выходу керна, водопоглощению промывочной жидкости, набуханию и обвалам пород в стенках сква-

жин, каротажу и микропенетрации керна.

В нашем случае микропенетрация в поле производится ручным микропенетрометром, сконструированным на кафедре применительно к исследованиям полускальных пород. При этом выяснено, что удельное сопротивление микропенетрации пород, не имеющих видимой трещиноватости, прямо пропорционально временному сопротивлению раздавливания и связано со сцеплением следующей формулой:

$$C = 9.8 \, \lg R_m - 0.262,$$

где

C — сцепление, T/M^2 ,

 R_{m} — удельное сопротивление микропенетрации, T/M^{2} .

Плотность, влажность, гранулометрический состав и другие необходимые классификационные характеристики пород определяются по каротажным диаграммам и в полевой или стационарной лаборатории по монолитам. Величина объемного веса по данным плотностного каротажа оценивается по формуле

$$\Delta = 2,52 - 1.3 \cdot \frac{I_{\gamma\gamma}}{I_{0\gamma\gamma}},$$

где

 $I_{\gamma\gamma}$ — интенсивность рассеянного γ -излучения,

 I_{011} — величина натурального фона с рабочим эталоном.

Целью инженерно-геологического районирования является разделение площади каждого месторождения по сложности геологического строения, водоносности, свойствам и устойчивости пород. В основу положена балльная оценка инженерно-геологических условий. Лучшими считают-

ся площади месторождения с меньшим количеством баллов.

На стадии детальной разведки выясняются инженерно-геологические условия строительства первых карьеров и проводится оценка устойчивости пород, которые окажутся в бортах, подошвах и отвалах намечаемых разрезов. С этой целью детально исследуется геологическое строение, водоносность и свойства пород каждого участка, выбранного для заложения карьера. Исследования проводятся до глубины на 15-20 м ниже подошвы карьера одновременно с разведочными работами. С целью решения указанных задач особенно детально выясняется характер залегания, монолитность, однородность, состав, строение, цементация, выветрелость и микротрещиноватость пород. Окончательно разрабатывается и при необходимости детализируется инженерно-геологическая классификация. По обобщенным показателям, с учетом вероятных изменений свойств пород, определяются расчетные характеристики для каждого инженерно-геологического вида пород. В процессе выбора расчетных показателей нами применяются методы теории вероятностей и теории информации. Как известно, к настоящему времени предложен ряд методов получения расчетных показателей. Данному вопросу посвящены работы Н. Н. Маслова, Н. В. Коломенского, Г. М. Шахунянца, Р. И. Балли, Ил. Илиева, Е. А. Писарева и др. Методы различны по строгости и объективности получаемых результатов. Нами за расчетное значение показателя $x_{\rm p}$ при выбранной доверительной вероятности и нормальном распределении частных показателей свойств пород, принимается его математическое ожидание $M_{\rm x}$, в которое вводятся коэффициенты, учитывающие неблагоприятные условия работы пород в бортах намечаемых карьеров.

$$x_p = \frac{M_x}{k_1 \cdot k_2 \cdot k_3},$$

гле

 κ_1 , κ_2 , κ_3 ,.. — факториальные коэффициенты, определяемые путем анализа устойчивости бортов в действующих карьерах, заложенных в

аналогичных инженерно-геологических условиях.

Для Канско-Ачинского бассейна произведение k_1 , k_2 , k_3 принимаем за 1,1. Необходимо заметить, что до настоящего времени отсутствуют достаточно строгие обоснования выбора значений доверительной вероятности, поэтому возникает необходимость в поиске новых методов оценки $M_{\rm x}$ на основе теории информации с введением понятия эн-

тропийного значения рассеяния оценки M_x , равного 2,066 $\cdot \frac{S}{\sqrt{N-1}}$. Ме-

тод определения этого коэффициента в последнее время освещен в работе П. В. Новицкого, где можно найти и обоснование коэффициента

2,066. В этом случае для каждого выделенного инженерно-геологического вида пород расчетные параметры можно определять по следующим формулам:

1. Угол внутреннего трения

$$\varphi_p = 0.9 \cdot \left(\bar{\varphi} - 2.066 \frac{S_{\varphi}}{\sqrt{N-1}} \right),$$

$$\varphi_p' = 0.9 (\bar{\varphi} - 2.066 \cdot S_{\varphi}).$$

2. Сцепление

$$C_p = 0.9 \cdot \left(\bar{C} - 2.066 \frac{S_c}{\sqrt{N-1}} \right),$$

 $C_p' = 0.9 \left(\bar{C} - 2.066 \cdot S_c \right),$

где

 ϕ_p' , C_p — расчетные значения по поверхностям ослабления;

 $\bar{\phi}$, \bar{C} — средние значения сцепления и угла внутреннего трения, полученные по достаточному количеству частных характеристик;

 S_{φ} , S_{c} — стандарты;

N— количество частных характеристик, определенных в лаборато-

рии.

Расчетная величина объемного веса каждого вида породы принимается по среднеарифметическим значениям. В процессе предварительных расчетов можно пользоваться ускоренным способом определения стандартов через размахи показателей в выборке

$$S_x = \frac{x_1 - x_2}{\alpha_N} ,$$

где

 x_1, x_2 — максимальное и минимальное значение показателей в выборке,

 α_N — коэффициент объема выборки, значение которого приведено в табл. 1.

Tаблица 1 Значения коэффициентов $lpha_N$

Число опреде- лений <i>N</i>	α_N	Число опреде- лений <i>N</i>	α_N
15	3,472	29	4,058
16	3,532	30	4,086
17	3,588	32	4,130
18	3,640	34	4,190
19	3,688	36	4,236
20	3,734	38	4,280
21	3,778	40	4,322
22	3,820	45	4,399
23	3,858	50	4,498
24	3,896	55	4,572
25	3,930	60	4,638
26	3,964	65	4,700
27	3,996	70	4,754
28	4,028		1,701

Учитывая геолого-структурные особенности месторождений, направление движения рабочих бортов карьеров по пологим падениям пластов и обязательное предварительное осущение пород, расчеты общей устойчивости бортов нами выполнялись с применением способа многослойного откоса. При этом предполагается, что плоскость скольжения в верхней части откоса пойдет под крутым углом к наслоению, а в нижней части-по более слабому слою или трещиноватой зоне. К настоящему времени такого характера расчеты выполнены для ряда крупных карьеров, намеча-

емых на Итатском, Березовском и других буроугольных месторождениях. Во всех случаях общие углы наклона бортов при глубинах карьеров 150—250 м при условии предварительного осущения пород оказались 26—33° (табл. 2).

Результаты расчетов углов наклона рабочих бортов намечаемых карьеров

Таким образом, всестороннее изучение инженерно - геологических условий месторождений и обоснованное применение достаточно надежных методов расчета позволяет наметить общие углы наклона бортов крупных карьеров до их заложения и в значительной мере

№ п/п	Месторождения	Глубина карьера, м	Угол наклона борта карьера, град
1	Итатское Березовское Березовское Урюпское Татауровское	200	28
2		200	29
3		250	26
4		200	30
5		150	33

предопределить условия разработки угольных пластов. Вполне естественно, что инженерно-геологические исследования не должны заканчиваться на стадии детальной разведки. В последующем необходимы всесторонние исследования и стационарные наблюдения, которые позволят проверить принятые решения предварительного прогноза в части устойчивости пород и учесть все изменения, возникающие в период строительства и работы разрезов.

В данной краткой статье рассмотрена лишь общая схема последовательности исследований и решения вопросов сложной проблемы прогнозирования инженерно-геологических условий разработки буроугольных месторождений Сибири крупными карьерами. Более детальные вопросы методики исследований, кроме того, освещены в работах Ф. П. Нифантова, В. Е. Ольховатенко, В. Н. Пуляева и Е. А. Писарева, частично отмеченных в списке литературы [6—9, 14—18]

ЛИТЕРАТУРА

- 1. С. Д. Бабушкин, Д. И. Пересунько, С. П. Прохоров, Г. Г. Скворцов. Изучение гидрогеологических и инженерно-геологических условий при разведке и освоении месторождений твердых полезных ископаемых. «Недра», М., 1969.
- 2. Н. В. Коломенский. Общая методика инженерно-геологических исследований. «Недра», 1968.
- 3. В. Д. Ломтадзе. Методы лабораторных исследований свойств грунтов. Госгеолтехиздат, 1952.
- 4. В. Д. Ломтадзе. Общие принципы и классификация горных пород в инженерной геологии. Труды «Гидропроекта», сб. 2, 1965.
- 5. Ю. Н. Малюшицкий. Условия устойчивости бортов карьеров. Изд. АН УССР, 1957.
- 6. Ф. П. Нифантов. Основные направления инженерно-геологических исследований угольных месторождений Сибири.— В сб.: Вопросы методики инженерно-геологических исследований, т. 2, Томск, 1967.
- 7. Ф. П. Нифантов. Некоторые вопросы инженерно-геологических исследований буроугольных месторождений Канско-Ачинского бассейна.— В сб.: Материалы по геол. и полезным ископаемым Зап. Сиб. Изд-во Томского ун-та, Томск, 1964.
- 8. Ф. П. Нифантов, В. Н. Пуляев, Е. А. Писарев. Инженерно-геологические условия разработки некоторых буроугольных месторождений Забайкалья.— Тр. ТИСИ, изд-во Томского ун-та, 1969.
- 9. Ф. П. Нифантов, В. Е. Ольховатенко, Е. А. Писарев. Инженерногеологическая характеристика Итатского буроугольного месторождения.— Сборник научных трудов ТИСИ, т. XII, изд-во Томского ун-та, 1967.
- 10. П. В. Новицкий и др. Об использовании энтропийного значения погрешности в качестве критерия точности приборов и измерений.— «Измерительная техника», 1966, II.

- 11. С. П. Прохоров, Е. Г. Качугин. Методическое руководство по гидрогеологическим и инженерно-геологическим исследованиям при разведке месторождений твердых полезных ископаемых. Госгеолтехиздат, 1955.
- 12. П. Н. Панюков. Основы физической минералогии и петрографии, МГИ, ч. 1, 1966 и ч. 2, 1968.
 - 13. П. Н. Панюков. Инженерная геология. Госгортехиздат, 1962.
- 14. Е. А. Писарев. К вопросу методики статистической обработки показателей инженерно-геологических свойств пород.— Труды Томского инженерно-строительного института, 1967.
- 15. В. Н. Пуляев, Е. А. Писарев. К вопросу о пространственной изменчивости свойств горных пород.—«Изв. ТПИ», т. 196, 1969.
- 16. В. Н. Пуляев, В. В. Кравченко, Ю. С. Казазаев. Метод и результаты исследований полускальных пород микропенетрометром.—«Изв. ТПИ», т. 201, 1971.
- 17. В. Н. Пуляев. Исследования инженерно-геологических условий Березовского буроугольного месторождения в связи со строительством крупных карьеров. Диссертация, Томск, 1969.
- 18. В. Е. Ольховатенко, В. Н. Пуляев. Исследование сопротивления сдвигу некоторых типов пород Итатского буроугольного месторождения.—«Изв. ТПИ», т. 151. 1966.
- 19. Г. Скворцов, Л. И. Романовская. Инженерно-геологические исследования и прогнозы при разведке месторождений полезных ископаемых, «Недра», 1966.
 - 20. Г. Л. Фисенко. Устойчивость бортов карьера и отвалов. «Недра», 1965.