Том. 119

1963 г.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОГО РЕЖИМА ОДНОСЛОЙНЫХ ГЕРМЕТИЗИРОВАННЫХ МИКРОПРОВОЛОЧНЫХ СОПРОТИВЛЕНИЙ

А. М. КИРИК, А. С. ЛЯЛИКОВ

(Представлено профессором, доктором Г. И. Фуксом)

Герметизированные микропроволочные сопротивления находят все большее применение в аппаратуре, работающей в условиях высокой влажности и в большом интервале температур, в частности, в местах с тропическим климатом, в арктических условиях и на больших высотах.

Наличие данных о тепловом режиме обмотки сопротивления при различных температурных условиях окружающей среды позволяет при проектировании аппаратуры использовать сопротивления, обеспечивающие заданный тепловой режим и, следовательно, определенные служебные качества.

в настоящей работе приводятся результаты экспериментального исследования зависимости максимального перегрева обмоток герметизированных микропроволочных сопротивлений от мощности сопротивления и температуры окружающей среды в условиях естественной конвекции.

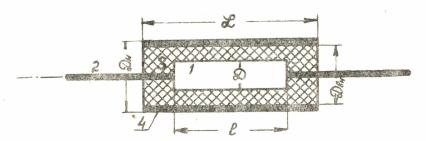
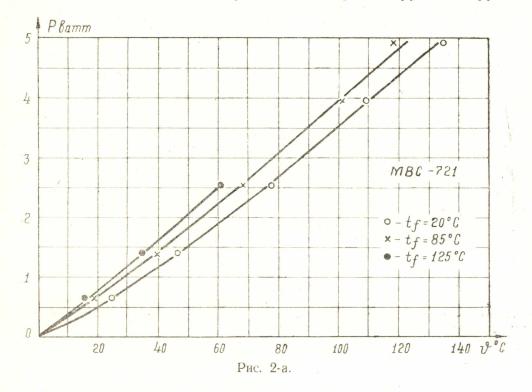



Рис. 1. 1 — сопротивление, 2 — токопроводы, 3 — смола, 4 — керамический корпус.

Исследование проводилось на моделях герметизированных микропроволочных сопротивлений, устройство и размеры которых показаны на рис. 1 и в табл. 1. Отличие моделей от микропроволочных сопротивлений, изготовляемых в соответствии с ВТУ ОПИ 539000, состоит в том, что намотка моделей сопротивлений произведена не микропроволокой, а обмоточным проводом ПЭМС Ø 0,05 мм. Поверхности керамических баллонов моделей покрывались электроизолирующим лаком для придания им той же степени черноты, что и у нормализованных сопротивлений.

Схема экспериментальной установки и методика исследования теплового режима герметизированных и негерметизированных сопротивлений [1] аналогична. Отличие состоит в том, что горячий спай термопары в опытах с герметизированными сопротивлениями помещался на обмотке, т. е. под керамической герметизирующей трубкой.

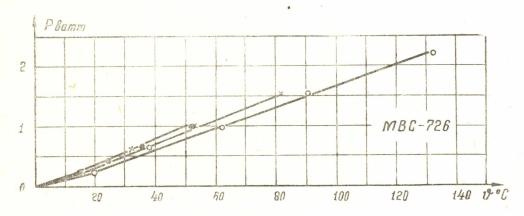


Рис. 2-б.

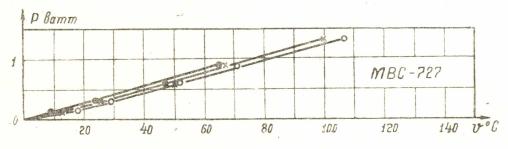


Рис. 2-в.

Тип сопротивления	L, мм	l, мм	D_{H} , MM	$D_{\rm вh}$, мм	D, мм	R, ом
MBC-721	- 61	46	17	13,5	8,3	2520
MBC-726	24	17	7,5	6,0	4,4	410
MBC-727	25	10	6	5,0	3,2	166

Результаты проведенной работы представлены графиками рис. $2\,a$, δ , ϵ , которые и отражают зависимость максимальных перегревов $\theta=t-t_f$ от мощности сопротивления P при различных температурах окружающей среды t_f ($t_f=20$; 85 и 125°C). С помощью графиков рис. $2\,a$, δ , ϵ по заданным P и t_f можно

С помощью графиков рис. 2a, 6, 8 по заданным P и t_f можно определить максимальный перегрев обмотки ϑ (и температуру ее t) для данного типа сопротивления или подобрать сопротивление, обеспечивающее заданный режим работы по P и ϑ в определенных условиях окружающей среды t_f .

Приведенные результаты могут быть рекомендованы для практического использования.

ЛИТЕРАТУРА

А. М. Кирик и А. С. Ляликов. Экспериментальное исследование температурного режима однослойных лакозащищенных негерметизированных микропроволочных сопротивлений. Настоящий сборник.