ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМ.С.М.КИРОВА

Том 257

I973

СВЯЗЬ МЕЖДУ МОДУЛЕМ СДВИГА И ПОВЕРХНОСТНОЙ ЭНЕРГИЕЙ ЩЕЛОЧНОГАЛОИДНЫХ СОЕДИНЕНИЙ

В.Н.Беломестных, Ю.Н.Сухушин

Аннотация

С использованием экспериментальных данных по температурной зависимости упругих постоянных монокристаллов щелочногалоидного ряда (исключая *CSF*) рассмотрена применимость формулы Качинского [I] для определения температурной зависимости поверхностной энергии граней (IOO), (IIO) и (III) этих кристаллов. Результаты расчета привлекаются для понимания анизотропии физико-механических свойств.

Поверхностная энергия является одним из важнейших физико-механических свойств твердого тела и основной характеристикой его поверхности. Представление о поверхностной энергии и использование ее значений широко дается в ряде важных физико-химических теорий (топохимии, теории адсорбции, энергетической теории гетерогенного катализа и др.). Однако надежных экспериментальных методов ее измерения для твердых кристаллических тел в настоящее время не существует. Поэтому несомненный интерес представляют исследования связи поверхностной энергии с некоторыми характеристиками твердых веществ для определения ее значений косвенными методами.

Было показано [1,2], что модуль сдвига определяется объемной плотностью энергии взаимодействия частиц, а с поверхностной энергией металлов связан соотношением

$$\boldsymbol{\sigma} = \boldsymbol{\beta} \boldsymbol{G} \boldsymbol{z}, \tag{I}$$

где β - постоянный коэффициент, U - модуль сдвига, Z - межатомное расстояние.

Подобного рода соотношения между энергетическими характеристиками твердых веществ и их упругими свойствами (например, [2,3]) были подвергнуты проверке нами для щелочногалоидных соединений и некоторых твердых растворов на их основе; расчеты показали, что получающиеся значения энергии решетки и энергии связи имеют хорошее соответствие с табличными [4]. Как дальнейшее расширение указанных корреляций имеет смысл распространение (I) на другие класси соединений для различных кристаллографических направлений как функцию температуры:

$$\boldsymbol{\sigma}_{(hke)}(T) = \boldsymbol{\beta} \boldsymbol{G}_{[hke]}(T) \boldsymbol{z}_{[hke]}(T), \qquad (2)$$

где.

е: б(hke)(7) - температурная зависимость поверхностной энергии для различных граней кристалла;

- G[hke](7) температурная зависимость модуля сдвига по кристаллографическому направлению;
- 2[hkl](T)- температурная зависимость кратчайшего межатомного расстояния в этом направлении.

Проверка (2) для кристаллов щелочногалоидного ряда облегчается тем, что с одной стороны для них имеются экспериментальные данные по упругим постоянным в зависимости от температуры, а с другой – довольно значительное число работ, посвященных теоретическому вычислению поверхностной энергии. Имеющиеся экспериментальные данные по поверхностной энергии, как правило, находятся в плохом соответствии с теоретическими [5,6].

Модули сдвига при данной температуре определялись через коэффициенты упругости по известным соотношениям [7].

Зависимость межионного расстояния от температуры рассчитывалась с использованием коэффициента линейного расширения $\mathcal{L}(T)$:

$$Z(T) = 2_0 (1 + d(T) /),$$
 (3)

где ⁷о – межионное расстояние при 0^оК. Величина *в* была принята 0,06, как и в [8].

Соотношения между кратчайшими межионными расстояниями по различным кристаллографическим направлениям, как известно, составляют:

$$\begin{aligned} &\mathcal{Z}_{[110]} = \sqrt{2} \ \mathcal{Z}_{[100]}, \quad &\mathcal{Z}_{[111]} = \sqrt{3} \ \mathcal{Z}_{[100]} \\ &\mathcal{Z}_{[110]} = \sqrt{2} \ \mathcal{Z}_{[100]}, \quad &\mathcal{Z}_{[111]} = \frac{\sqrt{3}}{2} \ \mathcal{Z}_{[100]} \end{aligned}$$

для соединений со струк-

турой типа Na Cl и Cs Cl, соответственно.

В табл. І приведены результаты расчета поверхностной энергии граней (IOO) и (IIO) кристаллов щелочногалоидного ряда нри О^OК, грани (IOO) при температуре плавления^{I)} и температурного коэффициента поверхностной энергии, грани (IOO) по расчетам Задумкина С.Н. [9] и экспериментально полученного для расплава [IO].

Расчетн этих же величин по (2) для граней куба, ромбического додекаэдра и октаэдра при температуре 0°К, 293°К и Т_{пл.} представлены в таблице 2. Для определения модуля сдвига при 0°К и Т_{пл.} использовались экстраполированные к этим температурам экспериментальные данные температурных зависимостей упругих постоянных (коэффиниентов упругости), за исключением Li J, для которого были взяты оценочные значения упругих постоянных при 0°К и температурный коэффициент из [II]. Данные по 70, $\mathcal{L}(7)$ и Т_{пл.} были взяты из [I2 – I4].

Сравнение результатов двух таблиц показывает в целом, что расчет по (2) дает правильное распределение по величинам поверхностных энергий соединений щелочногалоидного ряда, а получающиеся значения поверхностной энергии и температурных коэффициентов ее приемлемыми.

По теории М.Борна [I5] и Я.И.Френкеля [I6] для галоидных солейщелочных металлов $\frac{\sigma_o(110)}{\sigma_o(100)} = 2,5;$ $\frac{\sigma_o(111)}{\sigma_o(100)} = 5,8I, a экспери$ $ментальные данные по В.Д.Кузнецову [5,6] <math>\frac{\sigma(110)}{\sigma(100)} = \sqrt{2};$

Расчет по (2) показывает, что отношения поверхностных энергий граней кристаллов меняются с изменением температуры и состава соединения, оставаясь приблизительно постоянными при данной температуре для ряда соединений с одинаковым металлическим ионом.

Хотя температурная зависимость поверхностной энергии кристаллов вида (2) не является вполне корректной, тем не менее выводы из результатов табл. 2 для рассмотренных соединений не противоречат известным фактам. Для всех соединений при О^ОК поверхностная энергия граней (IOO) оказалась наименьшей, что согласуется с наличием плоскостей спайности для них по граням куба. Однако с изменением температуры минимальное значение поверхностной энергии грани (IOO) для некоторых соединений не сохраняется. Так, например, для

I) В работе под Т_{пл} понимается температура, численная величина которой сколь угодно близка к истинной. литиевых соединений уже при комнатной температуре поверхностные энергии граней (IOO) и (IIO) примерно совпадают. Из простейших экспериментов известно, что при сверлении грани (IOO) монокристалла *Li* / возникают трещины под углом 45°, т.е. по направлениям плоскостей (IIO). О наблюдении вторичных плоскостей скола (IIO) при определенных условиях указано, к примеру, в обзоре Гилмана *A*. [I7]. Для кристаллов *Na Cl*, *Na B*?, *Na J G (100)* и *G (110)* выравниваются вблизи температуры плавления. В опытах М.А.Большаниной [6] с ударами шариков для кристаллов каменной соли действительно наблюдалась инверсия направления развития трещин, правда, при 200°С.

Температурную зависимость поверхностной энергии граней кристаллов, согласно (2) можно считать линейной. Действительно, модули сдвига от температуры имеют линейную зависимость (за исключением небольшого диапазона температуры вблизи 0^{O} К) и монотонно убывают с ее ростом, а нелинейность $\mathcal{L}(T)$ и его вклад в общую температурную зависимость $\mathcal{G}(T)$ весьма невелики. Из табл. 2 видно, что $\frac{\partial \mathcal{G}}{\partial T} = const$ для одноименных граней кристаллов с одинаковым катионом, что, впрочем, и следовало ожидать при расчете по (2), так как изменение упругой анизотропии с температурой целочно-талоидных соединений определяется в первую очередь типом металлического изна [18].

При температуре плавления поверхностная энергия грани (100) для большинства соединений оказалась в удовлетворительном согласии с вычисленной Бимюллером [19] и экспериментально определенной Егером [10].

При сравнении с экспериментальными значениями поверхностной энергии можно отметить, как удовлетворительное согласие (б (100)= 300 эрг.см⁻² для NoCl при комнатной температуре [5]), так и плохое (б (100) = 340 эрг. СМ⁻² для LiF при 196°C) [17]. Необходимо отметить, что расчет по (2) с наибольшей точностью выполнен для б (100) при комнатной температуре, так как в этом случае G (100) дается непосредственно экспериментом и отсутствует экстраполяция упругих постоянных к предельным температурам.

Таким образом, имеется вполне реальная возможность определения поверхностной энергии из упругих постоянных косвенными методами, например, ультраакустическими. При этом не требуется разрушения поверхности образца либо его внутренних частей, на чем основано большинство экспериментальных методов определения поверхностной энергии.

ТаблицаІ

			Tam apr.	ряда см ⁻²	авто .град	ров д	ля 0 ⁰]	киТ,	(110) ил. ^В	əpr.	см ⁻²	N CE	e Ten	шера	атурн	ных	коэфд	Ó <mark>NIÚN</mark> E	ent 1	pacte-
Соли	Ь	LiF	LiC	l Lib	LiJ	NaF	Nacl	NaBz	Noj	KF	KCl	KBz	KJ	RB F	RECE	REE	br RBJ	CsCl	CsBz	Автор СяЛ
		-					150 164 210	II9 I40 I74	96 107		107 121 -	92 118 115	75 83 II3			-				- [15] [16] [20]
0°K	(100)	255 532 237	140 226 216	227	205	202 3I4 227	II4 I72 2I3	IO6 I50 I86	88 117 175	143 203 217	97 127 167	89 106 157	78 120 141	132	98 9)I (80			[I0] [9] [2I]
		205 289 142	212 251 107	200 226 86	176 200 73	205 266 221	184 211 158	173 192 138	155 170 118	207 226 188	155 175 145	146 159 130	132 141 113	197 213 176	150 166 140	140 150 125	122 133 110			[22] [23] [24]
	(110)	962 588	599 340	5I5 425	280 226	7I2 555	470 354	4I3 304	349 252	528 423	367 298	362 262	279 222	473 380	337 277	30I 246	259 210	257 219	234 200	207 [23] 175 [24]
Т _{пл.}	(100)	255	138	-	87	203	II4	106	85	145	100	89	82	135	92	96	74	92		74 [19]
<u>d6</u> dt	(100)	014 012	008 007	-	_	0II 0I0	007 007	007 007	-	008 009	006 007	005 007	005 006	-			-	-		- [9] - [10]

Поверхностная энергия граней (ТІП), (ТОП) галогенинов шелочных металлов по расче-

	Рез	вультаты расче эрг.см ⁻² . гра	ета по (2) б ад ^{-I}	в эрг.	см ⁻² для тре:	Та х темпера:	блица гури — -	a 2 <u>dø</u> dT	TTOWN War
	LiF	LiCl Libr LiJ	NaF NaCl NaBz N	laj KF	KCl KB2 KJ	REF RECE	RBB2 RBJ	CSCE CSB2 CSJ	SUM
Cij	[25]	[26] [27] [II] [[25] [25] [26] [26	8] [26]	[25] [25] [25]	[11] [29]	[26] [30]	[31] [25] [25]	MAL O
1)	885	428 349 285 4	53 232 T97 T6	0 214	T28 TT3 88	T80 T02	87 73	224 229 213	6

Источник С і ј		[25]	[26]	[27]	[II]	[25]	[25]	[26]	[28]	[26]	[25]	[25]	[25]	[II]	[29]	[26]	[30]	[31]	[25]	[25]	E.
X.0	(100)	885	428	349	285	453	3 32	197	I60	214	I28	II3	88	I80	I02	87	73	224	229	213	191
	(IIO)	994	504	430	347	880	425	362	296	426	280	247	I86	383	224	199	I8 2	382	332	350	
	(III)	II28	580	501	403		574	484	401	602	426	394	285	574	328	304	244	250	206	224	
293°K	(100)	786	399	323	354	406	223	181	I49	209	I22	105	84	I62	99	84	68	178	172	155	
	(IIO)	794	396	322	252	652	375	308	252	394	252	223	I79	358	213	185	I58	320	294	259	
	(III)	848	44I	356	278	819	458	405	372	538	364	324	262	535	314	277	204	213	195	168	
	(100)	664	300	268	212	324	I63	I54	II8	178	IIO	88	72	II8	86	71	59	69	56	65	
UU	(110)	430	466	556	85	423	I93	II5	I27	292	I69	I42	II2	285	I58	I20	72	I59	I23	I33	
F	(III)	446	122	53	I02	502	198	88	I44	362	213	182	I4 2	420	163	I4I	95	122	9 I	96	
de	(100)	017	017	OII	OIO	009	007	004	005	003	002	003	002	006	002	002	002	018	019	015	
	(IIO)	050	039	05 I	040	025	025	027	021	OI2	OII	012	OIO	OIO	800	OIO	014	026	028	021	1
	(III)	038	045	048	042	030	031	033	030	017	017	017	014	015	018	012	015	015	017	012	34.2

197

Соль

Это особенно важно при последующем распространении описанного метода на соединения, испытывающие разложение при механическом разрушении, для которых к тому же неприменим и метод теплоты растворения. Определение поверхностной энергии через модуль сдвига позволяет сравнительно просто рассмотреть ее зависимость от различных внешних условий, например, температуры. Учитывая возможность определения энергии решетки и энергии связи через упругие характеристики вещества, можно заключить, что энергетика некоторых твердых веществ может быть определена в рамках одного экспериментального метода.

Литература

- I. G.C.Kuczynski. J. Appl. Phys., 24, 1250, 1953.
- 2. C.B.Hemmidob. Mox, 12, 1391, 1968; JAH CCCP, 181, 1427, 1968.
- 3. E.R.Fitzgerald, T.W.Wright. Phys. stat. Solidi, 24, 37, 1967.
- 4. В.Н.Беломестных, Ю.Н.Сухушин. Изв. ТШИ, 251, 362, 1970.
- 5. В.Д.Кузнецов. Физика твердого тела. I, "Красное Знамя", Томск, 1937.
- 6. В.Д.Кузнецов. Поверхностная энергия твердых тел. ГИТТЛ, М., 1954.
- 7. W.Voigt. Lehrbuch der Kristallphysik, Leipzig, 1928.
- 8. A.N.Stroh. Proc. Roy. Soc., A223, 404, 1954.
- 9. С.Н. Задумкин. Изв. вузов, "Физика", 2, 151, 1958.
- IO. M.Eher. Z. f. Anorg. und All. Chem., 101, 1, 1917.
- II. Г.Лейофрид, В.Людвиг. Теория ангармонических эффектов в кристаллах. ИЛ, М., 1963.
- 12. А.А.Воробьев. Механические и тепловые свойства щелочногалоидных монокристаллов. "Высшая школа", М., 1968.
- А.А.Воробьев. Физические свойства ионных кристаллических диэлектриков. Книга I, ТГУ, Томск, 1960.
- I4. Справочник химика. I, ГХИ, 1963.
- I5. M.Born, P.W.Stern. Ber. d. Preus. Akad., 48, 901, 1919.
- 16. Я.И.Френкель. Электрическая теория твердых тел, 1924.
- I7. D.Gilman. J. Appl. Phys., 31, 2208, 1960. Д.Гилман. УФН, 80, 455, I963.
- 18. С.П.Никаноров, А.В.Степанов. ФТТ, 6, 1989, 1964.
- 19. J.Beimiller. Z. f. Phys., 38, 759, 1926.
- 20. V.Zdanov, A.Erchow, G.Galachow. Zs. 1. Phys., 94,241,1935.
- 21. С.Н. Задумкин, В.Х. Хуламханов. ФТТ, 5, 48, 1963.
- 22. С.Н.Задумкин, А.И.Темроков. Изв. вузов, "Физика", 9, 406,1968.

23. G.C.Benson, P.Balk, J.Chem. Phys., 31, 109, 1959. J. Chem. Phys., 35, 2113, 1961. 24. G.C.Benson. 25. С.П.Никаноров, А.А. Нраньян, А.В.Степанов. ФТТ. 6. 1996, 1964. J.T.Lewis, A.Lehoszky, C.V.Briscol. Phys. Rev., 161,877,1967. 26. B.J.Marchall, C.R.Cleavelin. J.Phys.Chem.Sol., 30,1905,1969. 27. B.J.Marchall, R.W.Claytor. Phys. Rev., 120, 332, 1960. 28. B.J.Marchall, R.E.Miller. J.Appl.Phys. 38, 4779, 1967. 29. 30. П.И.Антонов, В.К.Кардашев, С.П.Никаноров. ФТТ, 9, 676, 1967. O.D.Slagle, H.A.Mckinstry. J. Appl. Phys., 38, 451, 1967. 3I.

and analysis structure for the set of the