О ЗАВИСИМОСТИ ЭЛЕКТРОПРОВОДНОСТИ НЕКОТОРЫХ
ГОРНЫХ ПОРОД И МИНЕРАЛОВ ОТ ГЕОЛОГИЧЕСКИХ
ПРОЦЕССОВ И ВРЕМЕНИ

В. Н. САЛЬНИКОВ

(Представлена научным семинаром отдела ФГП ННИ РФ)

Данное исследование проведено с целью изучения электропроводности некоторых минералов и горных пород и изменения ее под воздействием геологических процессов и времени. Интересно, на наш взгляд, оценить, какова роль геологических процессов и времени в изменении энергии кристаллической решетки породообразующих минералов калиевого полевого шпата и мусковита, дающих информацию о возрасте методом определения их удельной электропроводности в области температур от 900—1000° C, когда в переносе зарядов играют роль собственные ионы кристаллической решетки.

Макензи и Мильн [3], проводя растирание мусковита совместно с солями Ca, Al и Si, установили, что количество в мусковите алюминия и кальция увеличилось, а кремния уменьшилось. Авторы других работ [4] подтвердили значительное поглощение кальция при одновременном выведении из решетки щелочных металлов, но результаты расходятся с Макензи и Мильном в отношении алюминия и кремния.

Изучая триклинность калиевых полевых шпатов (к. п. ш.) для решения вопросов генезиса пегматитов и гранитов, авторы [1] приходят к выводу, что присутствие бария в к. п. ш. оказывает тормозящее влияние на процесс упорядочения кристаллической решетки.

Естественно предположить, что распад K^{40} в кристаллической решете калийсодержащих минералов и замена его на Ca^{40} приводит к потенциальной возможности высвобождения Si^{4+}, а вместе с тем и пая энергии, вносимого им в соединение при температуре, близкой к точке плавления (900—1000° C). Количество возможного высвобождения Si^{4+} зависит от времени и содержания в минерале калия, алюминия и трехвалентного железа, способных компенсировать нейтральность молекул в соединении. Эмпирическая зависимость электропроводности от содержания калия и возраста минералов была получена Ф. С. Закировой [2].

Для объяснения механизма изменения энергии активации и зависимости электросопротивления от геологических процессов и времени автор останавливается на предположении, что полиморфные превращения в минералах под действием нагрева могут непосредственно изменить значение электропроводности. Поэтому количество энергии для образования устойчивой в данных условиях симметрии будет зависеть от возраста минерала и содержания элементов, в том числе и K^{40}. Каждая полиморфная модификация характеризуется комплексом физических свойств. Пе-
реход из одной модификации в другую сопровождается скачкообразным изменением физических свойств и при постоянной температуре.

Образец слюды или горной породы нагревался линейно со скоростью 10° в минуту от 20 до 1100° С с последующим охлаждением. При первичном нагреве (рис. 1) до температуры 1100° С на кривой зависимости \(\lg \delta = f \left(\frac{1}{T} \right) \) в пределах температур (560—850°С) изменение электропроводности вызвано дегидратацией слюды и соответственно поляризацией ее с последующим уменьшением числа носителей.

Участок прямой от 870 до 970°С с энергией активации 0,8 эв характеризует собственную проводимость минерала, где, по мнению автора, в проводимости участвуют катионы Si⁺⁴, которые выше температуры 870°С высвобождаются из каолинитовой молекулы (KAISi₃O₈), частично компенсируя недостающий алюминий во вновь образованной анатомитовой молекуле (CaAl₂Si₂O₈). Или, рекомбинируя с ионами кислорода, выделяются в виде кварца (SiO₂), вследствие чего выше температуры 970°С энергия активации растет и равна 1,6 эв. При обратном ходе характерного излома при 970°С не наблюдается, и энергия активации становится неизменной (1,6 эв), что указывает на хорошую упорядоченность кристаллической решетки. Последующий нагрев и охлаждение образца существенно не изменили энергии активации. Образцы горных пород, содержащие кварц и тридимит, в пределах температур 870—1000°С дают такие же характерные изгибы, а это подтверждает, что носителями в данной области являются катионы Si⁺⁴ и их комплексы (рис. 1).

Рис. 1. Зависимость \(\delta = f \left(\frac{1}{T} \right) \) для мусковита (а, б, в) и кварцевого порфира (г): а) мусковит (Внутримонгольское м-ние), первичный нагрев (1) до 1100°С и охлаждение (2); б) вторичный нагрев (1) до 1100°С и охлаждение (2); в) мусковит (Енисейское м-ние), нагрев (1) до 1040°С и охлаждение (2); г) кварцевый порфир, нагрев (1) до 1040°С и охлаждение (2)
Очевидно, остается предположить, что только резко, но закономерное изменение структуры и кристаллической формы в зависимости от концентрации химического состава может повлиять на зависимость электропроводности от температуры. При этом сравниваются между собой две структуры одного и того же вещества в двух состояниях, отвечающих их различным термодинамическим условиям.

До тех пор, пока изменения условий невелики и не перепрыгивают известных границ, вещество остается изоморфным самому себе в первоначальном состоянии, но, как только граница дозволенных деформаций пройдена, происходит полиморфное превращение [5]. Примером может служить изоморфизм полевых шпатов

\[
\text{NaAlSi}_3\text{O}_8 \to \text{CaAl}_2\text{Si}_2\text{O}_8, \\
\text{Na}^{+8}\text{Al}^{+3} \to \text{Ca}^{+2}\text{Si}^{+4}
\]

Процесс распала \(K^{40}\) и образования в решетке \(Ca^{40}\) можно также рассмотривать как частный случай изоморфизма.

\[
K^{40}\text{AlSi}_3\text{O}_8 \to Ca^{40}\text{AlSi}_3\text{O}_8 \to \text{Ca[Al}_2\text{Si}_2\text{O}_8 + \text{SiO}_2 \text{ или } \text{CaAl}_2\text{Si}_2\text{O}_8 + \text{SiO}_2.
\]

Но если система закрытая и не существует привноса \(Al^{+3}\), а один изоно\(Si^{+4}\) потери связи в кремнекислородном тетраэдре, то часть этой связи может попасть на компенсацию недостающего \(Al^{+3}\), а частительного заряда может компенсироваться кислородом с образованием кварца.

Если же по истечении некоторого времени горная порода, содержащая накопленный радиогенный \(Ca^{40}\), снова была подвержена расплавлению или нагреву до температуры 900—1000°C и система была открыта (существовала привнос \(Al^{+3}\) или присутствовало трехвалентное железо), изменение химического состава калиевого полевого шпата могло пойти до конца с образованием анортитовой молекулы и выделением кварца на 2/3 больше обычного

\[
K^{39}\text{AlSi}_3\text{O}_8 \cdot K^{40}\text{AlSi}_3\text{O}_8 \to \text{Ca}^{40}\text{AlSi}_3\text{O}_8 \to \text{Ca}^{40}\text{AlSi}_3\text{O}_8 \cdot \text{Ca}^{40}\text{AlSi}_3\text{O}_8 \to \text{разогрев до 900—1000°C с избытком Al}^{+3} \text{ или его привносом при наличии O}_2
\]

\[
\to K^{39}\text{AlSi}_3\text{O}_8 \cdot Ca^{40}\text{Al}_2\text{Si}_2\text{O}_8 + \text{SiO}_2.
\]

Аналогично изменение молекулы мусковита, содержащей \(K^{40}\):

\[
K^{40}\text{Al}_2[\text{AlSi}_3\text{O}_{10}] [\text{FOH}]_2 \to Ca^{40}\text{Al}_2[\text{AlSi}_3\text{A}_{10}] [\text{FOH}]_2 \to \text{Ca}^{40}\text{Al}_2\text{Si}_2\text{O}_8 + \text{SiO}_2 + \text{A}_2\text{O}_3 + H_2\text{O} + F_2.
\]

Следовательно, замена \(K^{40}\) на \(Ca^{40}\) в результате β-распада должна была бы привести к образованию новой молекулы в структуре минерала, если бы были нарушены химические связи в кремнекислородных тетраэдрах калиевого полевого шпата \((K\text{AlSi}_3\text{O}_8)\) или мусковита \((K\text{Al}_2[\text{AlSi}_3\text{O}_{10}] [\text{FOH}]_2)\). Эти связи могут быть нарушены при нагревании минерала или частично ослаблены при нагревании соединения, когда будет сообщена энергия (Еш), необходимая для образования и дрейфа (направленный перенос) собственного иона кристаллической решетки. Чтобы количественно определить величину энергии образования кристаллической решетки минерала и изменение ее в течение геологического времени, нами проведен расчет энергии решетки на модели.

Для показательного расчета возьмем модель соединения (мусковита и к. п. ш.), которая должна отвечать следующим требованиям:
1. Первоначальное соединение отвечает написанной химической формуле для к. п. ш. \((KAlSi_3O_8)\) для мусковита \((KAl_2[AlSi_3O_10] \cdot [FOH]_2)\).
2. Соединение в настоящее время содержит \(K^{40}\) 0,0119% от всего калия.
3. Соединение образовалось \(\tau\) млн. лет назад.
4. Условно представим, что в течение \(\tau\) млн. лет при каждом акте \(\beta\)-распада \(K^{40}\) и образовании атома \(Ca^{40}\) образуется молекула соответствующего соединения.
Пример:
\[
\begin{align*}
1. \quad & \frac{K^{40}AlSi_3O_8}{K. \text{ п. ш.}} \rightarrow \frac{Ca^{40}Al_2Si_2O_8}{\text{анортит}} \\
2. \quad & \frac{K^{40}Al_2[AlSi_3O_{10}] [FOH]_2}{\text{мусковит}} \rightarrow \frac{Ca^{40}Al_2[AlSi_2O_{10}] [FOH]_2}{\text{кальцитовая слюда}}
\end{align*}
\]
Итак, в течение геологического времени в первозданном соединении (в первом случае к. п. ш.) происходит накопление \(Ca^{40}\), стремящегося об-

Таблица 1

<table>
<thead>
<tr>
<th>(\tau\times10^6) лет</th>
<th>(\frac{Ca^{40}}{K^{40}})</th>
<th>Накопление атомов (Ca^{40}) или (K^{40}) в 1 см(^3) к. п. ш.</th>
<th>(\frac{E}{E} \cdot 10^{-3})</th>
<th>(\frac{1}{E} \cdot 10^{-3})</th>
<th>(\tau\times10^{-8}) (\text{o.m}^{-1})</th>
<th>(\text{m.m}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,048</td>
<td>0,3</td>
<td>4,6</td>
<td>21,8</td>
<td>13,2</td>
<td>(x\cdot10^{18})</td>
</tr>
<tr>
<td>100</td>
<td>0,101</td>
<td>0,6</td>
<td>9,16</td>
<td>10,9</td>
<td>7,1</td>
<td>1,1</td>
</tr>
<tr>
<td>200</td>
<td>0,152</td>
<td>0,9</td>
<td>13,75</td>
<td>7,26</td>
<td>4,0</td>
<td>1,1</td>
</tr>
<tr>
<td>300</td>
<td>0,209</td>
<td>1,3</td>
<td>19,80</td>
<td>5,05</td>
<td>3,0</td>
<td>1,1</td>
</tr>
<tr>
<td>400</td>
<td>0,268</td>
<td>1,7</td>
<td>26,0</td>
<td>3,84</td>
<td>2,5</td>
<td>1,1</td>
</tr>
<tr>
<td>500</td>
<td>0,323</td>
<td>2,1</td>
<td>32,0</td>
<td>3,03</td>
<td>2,2</td>
<td>1,1</td>
</tr>
<tr>
<td>600</td>
<td>0,398</td>
<td>2,6</td>
<td>39,7</td>
<td>2,53</td>
<td>2,1</td>
<td>1,1</td>
</tr>
<tr>
<td>700</td>
<td>0,451</td>
<td>2,9</td>
<td>44,4</td>
<td>2,25</td>
<td>2,0</td>
<td>1,1</td>
</tr>
<tr>
<td>800</td>
<td>0,532</td>
<td>3,3</td>
<td>50,4</td>
<td>1,98</td>
<td>1,9</td>
<td>1,1</td>
</tr>
<tr>
<td>900</td>
<td>0,609</td>
<td>4,0</td>
<td>61,3</td>
<td>1,64</td>
<td>1,8</td>
<td>1,1</td>
</tr>
<tr>
<td>1000</td>
<td>1,158</td>
<td>6,0</td>
<td>92,0</td>
<td>1,09</td>
<td>1,2</td>
<td>1,1</td>
</tr>
<tr>
<td>2000</td>
<td>3,150</td>
<td>20,1</td>
<td>309,0</td>
<td>0,31</td>
<td>?</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Таблица 2

<table>
<thead>
<tr>
<th>(\tau\times10^6) лет</th>
<th>(\frac{Ca^{40}}{K^{40}})</th>
<th>Накопление атомов (Ca^{40}) или (K^{40}) в 1 см(^3) мусковита</th>
<th>(\frac{E}{E} \cdot 10^{-3})</th>
<th>(\frac{1}{E} \cdot 10^{-3})</th>
<th>(\tau\times10^{-8}) (\text{o.m}^{-1})</th>
<th>(\text{m.m}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,048</td>
<td>0,2</td>
<td>3,6</td>
<td>27,8</td>
<td>13,2</td>
<td>(x\cdot10^{18})</td>
</tr>
<tr>
<td>100</td>
<td>0,101</td>
<td>0,4</td>
<td>7,2</td>
<td>13,5</td>
<td>7,1</td>
<td>1,1</td>
</tr>
<tr>
<td>200</td>
<td>0,152</td>
<td>0,7</td>
<td>11,1</td>
<td>9,0</td>
<td>4,9</td>
<td>1,1</td>
</tr>
<tr>
<td>300</td>
<td>0,209</td>
<td>1,0</td>
<td>16,6</td>
<td>6,0</td>
<td>3,0</td>
<td>1,1</td>
</tr>
<tr>
<td>400</td>
<td>0,262</td>
<td>1,2</td>
<td>18,8</td>
<td>5,3</td>
<td>2,5</td>
<td>1,1</td>
</tr>
<tr>
<td>500</td>
<td>0,323</td>
<td>1,5</td>
<td>23,7</td>
<td>4,2</td>
<td>2,2</td>
<td>1,1</td>
</tr>
<tr>
<td>600</td>
<td>0,398</td>
<td>1,9</td>
<td>29,2</td>
<td>3,4</td>
<td>2,1</td>
<td>1,1</td>
</tr>
<tr>
<td>700</td>
<td>0,451</td>
<td>2,1</td>
<td>33,2</td>
<td>3,0</td>
<td>2,0</td>
<td>1,1</td>
</tr>
<tr>
<td>800</td>
<td>0,532</td>
<td>2,5</td>
<td>39,3</td>
<td>2,5</td>
<td>1,9</td>
<td>1,1</td>
</tr>
<tr>
<td>900</td>
<td>0,609</td>
<td>2,9</td>
<td>44,6</td>
<td>2,2</td>
<td>1,8</td>
<td>1,1</td>
</tr>
<tr>
<td>1000</td>
<td>1,158</td>
<td>5,5</td>
<td>85,0</td>
<td>1,1</td>
<td>1,2</td>
<td>1,1</td>
</tr>
<tr>
<td>2000</td>
<td>3,150</td>
<td>14,9</td>
<td>214,0</td>
<td>0,45</td>
<td>?</td>
<td>1,1</td>
</tr>
</tbody>
</table>

6. Изучение ТПИ, том 250.
разовать апортитовую молекулу с высвобождением из связей кремне-
кислородных тетраэдров ионов Si⁺⁺ и привносом Al⁺⁺ или его компенсации
за счет 2/3 ионов Si⁺⁺. Автором произведен расчет энергии кристалличе-
ской решетки первозданного ортоклаза и мусковита по формуле Ферсмана
\[U = 256.1 \cdot (a \cdot \mathcal{E}_K_1 + b \cdot \mathcal{E}_K_2 +...) \] и изменение ее в течение геологического времени в результате накопления Ca⁴⁰ и образования апоритовых молекул при нагревании образца до 1000°С в настоящее время. Расчетные данные приведены в табл. 1 и 2 (см. стр. 81).

Значит, в процессе перераспределения связей в области температур
900—1000° С участвуют как ионы Ca⁴⁰, накопившиеся в кристаллической
решетке в течение геологического времени, так и ионы Si⁺⁺, которые
должны частично компенсировать недостаток Al⁺⁺, частично покинуть
кремнеилитриодный тетраэдр.

Зависимость электросопротивления от времени образования калий-
содержащих пород и минералов при температурах 900—1000° С обуслов-
ливается высвобождением определенного количества ионов Si⁺⁺ из соедине-
ния, а изменение энергии активации связано с перераспределением ио-
нов Si⁺⁺ и Ca⁺⁺ в кристаллической решетке минерала в тот момент, когда
его кристаллическая структура займет наиболее выгодное энергетиче-
ское состояние, т. е. произойдет перестройка некоторой части молекулы
из калиевошпатовой в апортитовую. При охлаждении этот процесс идет

Рис. 2. Зависимость \(c = f(\tau) \) (a) и \(\frac{1}{E} = f(\tau) \) для к. п. ш. (b) и мусковита (в):

а) экспериментальная кривая зависимости электропроводности от возраста мине-
рала (по Ф. С. Закировой); б) потенциальная возможность выделения энергии
из 1 см³ калиевого полевого шпата при доведении его до температуры плавления;

в) то же для 1 см³ мусковита
в обратном порядке, энергия поглощается и кристаллическая структура
вновь приобретает свое первоначальное состояние, устойчивое при норма-
льных температурах. Процесс повторяется до тех пор, пока не разру-
шится кристаллическая решетка минерала или температура нагрева об-
разца будет выше критической, при которой обратный переход
невозможен.

Построим зависимость энергии, освобожденной при удалении из сое-
динения в области температур 900—1000°, от времени и сравните с кривой
зависимости удельной электропроводности от времени (полученной
Ф. С. Закировой экспериментально), можно заметить, что кривые подчи-
няются одному и тому же закону радиоактивного распада K^{40} (рис. 2).

Из расчетов можно сделать выводы:

1. По мере накопления в решетке Ca^{40} происходит накопление ионов
Si^{+4} (вакансий), и система стремится к наименьшему энергетическому
состоянию, которое может быть осуществлено в пределах температур от
800 до 1000°С, когда ослабевают связи в кристаллической решетке
минерала.

2. Значение электросопротивления во второй точке перегиба кривой
в области температур 900—1000°С зависит от количества освобожденных
из соединения ионов кремния, участвовавших в процессе заряда.

3. На точность определения абсолютного возраста методом электро-
проводности будет влиять метасоматический привнос алюминия и трех-
валентного железа, а также механическое разрушение кристаллической
решетки, способствующее обмену катионов в кремнеальдровых
tетраэдрах.

4. Образование в течение геологического времени молекулы более
основного плагиоклаза и освобождение Si^{+4}, соединение его с O_2 с обра-
зованием SiO_2 дает нам еще один механизм разделения магмы на кис-
лую и основную в результате радиоактивного распада K^{40}. С этой точки
зрения можно объяснить образование письменной структуры в пегмати-
товых жилах путем метаморфизма и явления метаморфогенного
окварцевания.

ЛИТЕРАТУРА

2. Ф. С. З а к и р о в а. Изучение некоторых физических свойств калиевых минера-
лов и пород в целях разработки нового метода абсолютной геохронологии. Автореф. канд. дисс., Томск, 1966.
30, № 222, 1953.
4. А. Н. Ц в е т к о в и Е. П. В а л я ш н и к а. Материалы по термическому ис-
следованию слюд. АН СССР, 1956.
5. А. Е. Ф е р с м а н. Геохимия, Т. I—IV. Избр. труды. Т. III—V. Изд-во АН СССР,