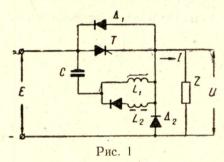
ПРЕРЫВАТЕЛЬ НА ТИРИСТОРЕ С КОМБИНИРОВАННОЙ КОММУТИРУЮЩЕЙ ИНДУКТИВНОСТЬЮ

В. Н. МИШИН, В. П. ЛАЙЕР, Ю. Н. БУЧЕНКО


(Представлена научно-техническим семинаром НИИ АЭМ)

Прерыватели на тиристорах с комбинированной коммутирующей индуктивностью, т. е. при шунтировании коммутирующего дросселя насыщения, выполненного на сердечнике с прямоугольной петлей гистерезиса (ППГ), линейной индуктивностью и диодом, предложены Морганом [1]. Однако в литературе отсутствует анализ процессов в подобных прерывателях.

Рассмотрим процессы в прерывателе, представленном на рис. 1, при

работе на активно-индуктивную нагрузку.

Анализ начнем с момента подачи отпирающего импульса на тири-

стор T, после чего начинается резонансный перезаряд емкости C через индуктивность L_2 и диод. Пренебрегая намагничиванием дросселя L_1 и потерями в коммутирующем контуре, получим уравнение динамики для этапа перезаряда конденсатора

$$L_2 C \frac{d^2 U_c}{dt^2} + U_c = 0.$$
 (1)

Решение (1) относительно напряжения и тока коммутирующей емкости при начальных условиях $U_{(0)} = -U_0$ и $i_{(0)} = 0$.

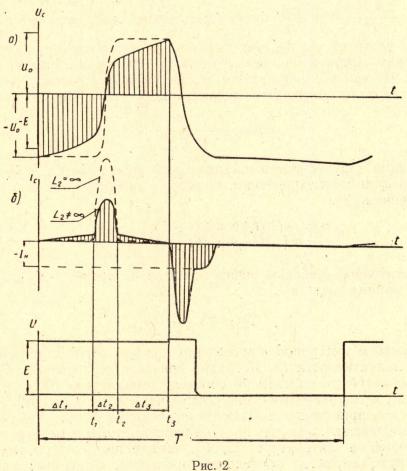
$$0 \leqslant t \leqslant t_1 \begin{cases} U_c = -U_0 \cos \omega_1 t, \\ i_c = U_0 C \omega_1 \sin \omega_1 t, \end{cases}$$
 (2)

где $\omega_1 = \frac{1}{\sqrt{L_2}C} -$ угловая частота контура коммутации при $\mid B \mid < B_s$.

При ненасыщенном сердечнике индуктивности L_1 , т. е. при $|B| < B_s$.

$$\mathcal{U}_{L_1} = N_1 S \frac{dB}{dt} - \mathcal{U}_c. \tag{4}$$

Решение (4) относительно индукции при $B_{(0)} \! = \! B_{s}$


$$B = B_s - \frac{U_0}{N_1 S} \sqrt{L_2 C} \cdot \sin \omega_1 t. \tag{5}$$

Время перемагничивания сердечника

$$t = \sqrt{L_2 C} \cdot \arcsin \frac{\Delta B N_1 S}{U_0 \sqrt{L_2 C}}$$
 (6)

Из (6) следует, что в зависимости от магнитного состояния сердечника возможны два режима работы:

1) при $\frac{\Delta B N_1 S}{U_0} < \sqrt{L_2 C}$ — перемагничивание по частным петлям гистерезиса, т. е. без захода сердечника в область «отрицательных» насыщений (рис. 2);

2) при $\frac{\Delta B N_1 S}{U_0} \ll \sqrt{L_2 C}$ — перемагничивание по полной петле гистерезиса при $\Delta B = 2B_s$.

Наилучшее использование материала сердечника дросселя будет иметь место во втором режиме при условии, что

$$\frac{t_0}{\sqrt{L_2C}} = 1,\tag{7}$$

где $t_0 = \frac{2 B_s N_1 S}{U_0}$ — время перемагничивания сердечника по полной петле гистерезиса при отсутствии шунтирующей цепи Д1, L2. Тогда максимальная длительность импульса

$$t_{\text{max}} = \frac{\pi}{2} \sqrt{L_2 C}. \tag{8}$$

Шунтирование дросселя насыщения линейной индуктивностью позволяет более чем в 1,5 раза повысить эффективность использования насыщающегося дросселя и уменьшить броски тока через тиристор, имеющие место при насыщении L_1 на первом интервале времени [2].

В общем случае время первого интервала из (6)

$$t_1 = \sqrt{L_2 C} \arcsin \frac{2 B_s N_1 S}{U_0 V L_2 C}. \tag{9}$$

При $\frac{2\,B_sN_1S}{U_0}\!<\!\sqrt{L_2C}$ будет иметь место колебательный перезаряд

емкости с частотой $\omega_2 \gg \omega_1$, так как произойдет насыщение сердечника до того, как напряжение на конденсаторе достигнет своего нулевого значения. Изменение напряжения и тока коммутирующей емкости на втором интервале описывается выражениями (2) и (3), но при

$$\omega = \omega_2 = \frac{1}{V L_{1s}C}.$$

Величина индуктивности насыщенного сердечника $L_{1s} \ll L_2$ и может вычисляться по геометрическим размерам обмотки как для обмотки без сердечника [2].

$$\underset{t_c=u_c(t_1)}{u_c = -U_c(t_1)\cos \omega_2(t-t_1)} t_1 \leq t \leq t_2.$$

С достаточной степенью точности интервал времени $\Delta t_2 \! = \! t_2 \! - \! t_1$ может быть принят равным

$$\Delta t_2 = \pi \sqrt{L_{1s}C}. \tag{10}$$

На третьем интервале конденсатор дозаряжается энергией, накопленной в индуктивности L_2 . Нетрудно показать, что время третьего интервала может быть определено согласно выражению (9), так как интервалы Δt_1 и Δt_3 взаимосвязаны общим перепадом индукции $\Delta B = 2B_s$.

При $t=t_3$ происходит насыщение сердечника L_1 и запирание тиристора. Дальнейший характер протекания процессов в прерывателе широко освещен в литературе [2, 3]. Временные диаграммы рис. 2 иллюстрируют характер протекания процессов. Сплошные кривые на рис. 2a, δ показывают изменение напряжения и тока коммутирующей емкости при шунтировании насыщающегося дросселя линейной индуктивностью, а пунктиром показаны при отсутствии индуктивности L_2 . Для большей наглядности интервалы времени Δt_1 и Δt_3 для обоих вариантов совмещены.

Таким образом, шунтирование насыщающегося дросселя линейной индуктивностью и диодом позволяет более чем в 1,5 раза увеличить проводящий интервал тиристора, т. е. лучше использовать дроссель насыщения, и уменьшает прямые всплески тока через тиристор.

Полученные в работе выражения могут быть использованы в инженерной практике при расчете преобразователей.

ЛИТЕРАТУРА

- 1. R. Morgan. Time ratia control and inverter power circuits, Патент США, № 3 360 712, 1967.
 - 2. Б. Бедфорд, Р. Хофт. Теория автономных инверторов. М., 1970.
- 3. В. В. Топельберг. Тиристорный стабилизатор постоянного напряжения с насыщающимся дросселем. Сборник института им. Кржижановского. М., «Наука», 1970, стр. 32—41.
- 4. В. П. Лайер, В. Н. Мишин, Ю. П. Сердюков. Анализ работы стабилизированного ЧИП с линейной коммутирующей индуктивностью. Сб. докладов VII научно-технической конференции ТПИ. Томск, 1971.