ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 262

ПРОЦЕССЫ И ХАРАКТЕРИСТИКИ МАГНИТНО-ПОЛУПРОВОДНИКОВЫХ УСТРОЙСТВ С ПРИНУДИТЕЛЬНОЙ КОММУТАЦИЕЙ КЛЮЧЕВОГО ЭЛЕМЕНТА

В. П. ОБРУСНИК, А. В. КОБЗЕВ, Ю. М. ЛЕБЕДЕВ

(Представлена научно-техническим семинаром НИИ АЭМ кафедры ЭПА)

Применение магнитно-полупроводниковых устройств в системах регулирования-стабилизации напряжения позволяет наиболее просто решить техническую задачу, уменьшить вес и габариты, увеличить надежность. Принцип работы и физика процессов в магнитно-полупроводниковых устройствах (МПУ) подробно изложены в [1].

Наибольший интерес представляет собой управление МПУ со стабилизацией фазы выходного напряжения [2], при котором ключ К (рис. 1, а) замыкается в начале каждого периода на время не более полупериода, классифицируемое как МПУ с принудительной коммутацией ключевого элемента.

Основные свойства и характеристики таких устройств определяются качеством применяемого материала сердечника и поэтому количественные зависимости не могут быть получены с достаточной точностью при идеальной кривой намагничивания. Здесь аппроксимация петли гистерезиса реального сердечника производилась отрезками прямых линий (рис. 1, б). Уравнения участков I—IV представлены выражениями (1)

$$\begin{array}{ll}
B_{\rm I} = a_{\rm 1}H + b_{\rm 1} & B_{\rm III} = a_{\rm 1}H + b_{\rm 2} \\
B_{\rm II} = a_{\rm 2}H + b_{\rm 1} & B_{\rm IV} = a_{\rm 2}H - b_{\rm 1}
\end{array} (1)$$

Коэффициенты в (1) определяются по аппроксимированной петле гистерезиса реального сердечника.

Анализ процессов для МПУ на рис. 1,а, управляемого по [2] при активной нагрузке, производится ниже для следующих допущений:

- а) сопротивление полупроводникового ключевого элемента принято постоянным и равным его динамическому сопротивлению при номинальном токе;
- б) активные и индуктивные сопротивления рассеяния обмоток равны нулю;
- в) при разомкнутом ключе K магнитопроводы $M\Pi Y$ не насыщаются, что обеспечивается соответствующим расчетом сердечника и числа витков обмоток W_1 и W_2 .

Качественная картина процессов в таком МПУ может быть пояснена по кривой мгновенных значений тока нагрузки (рис. 1, θ) и петле гистерезиса (рис. 1, θ). При этом в момент замыкания ключа (α =0) напряженность в сердечнике не равна нулю, и рабочая точка перемеща-

ется по участку петли гистерезиса I от некоторой точки 7 (0) к точке I $2(\alpha_1)$ (рис. 1,6), а ток $i_{\rm H}$ определяется в основном приложенным напряжением и сопротивлением нагрузки. Здесь и далее в статье под рабочей точкой понимается точка на плоскости В—Н, определяющая состояние сердечника в данный момент времени.

В момент $\alpha = \alpha_1$ рабочая точка переходит на участок II петли гистерезиса (точки 1 (α_1) на рис. 1, δ), а ток нагрузки изменяется практически по прежнему закону, так как обмотка W_2 сердечника замкнута на очень малое сопротивление $R_{\rm k}$ и индукция в нем изменяется незначительно (от точки 1 (α_1) до некоторой точки 2 (α_2) на рис. 1, δ). После

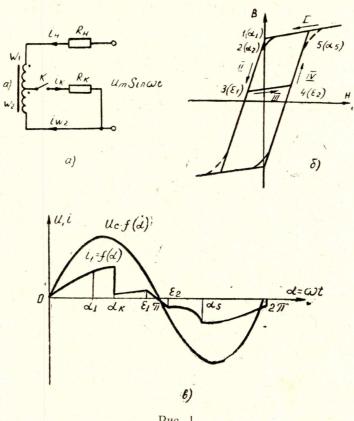


Рис. 1.

размыкания ключа К сердечник размагничивается, рабочая точка перемещается по участку II от точки 2 (α_2) до точки 3 (ϵ_1). Ток нагрузки при этом очень мал и определяется намагничивающим током сердеч-

В момент $\alpha = \varepsilon_1$, определяемый величиной напряжения сети и суммарным сопротивлением цепи, рабочая точка переходит на участок III петли гистерезиса и перемещается от точки 3 (ϵ_1) до точки 4 (ϵ_2) . Индукция изменяется незначительно и ток $i_{\scriptscriptstyle \mathrm{H}}$ опять определяется напряжением сети и сопротивлением нагрузки (рис. 1,8).

В момент $\alpha = \varepsilon_2$ рабочая точка переходит на участок IV, и сердечник намагничивается по траектории 4 (ϵ_2) \rightarrow 5 (α_s). Ток нагрузки в этом интервале определяется током намагничивания сердечника (см. кривую на рис. $1,\beta$ в интервале $\epsilon_2 \div \alpha_s$). При $\alpha = \alpha_s$ сердечник насыщается, и рабочая точка переходит на участок 1 петли гистерезиса, перемещаясь по траектории 5 (α_s) — 6 — 7 (2π) . При этом индукция в сердечнике практически не меняется, и ток $i_{\rm H}$ определяется напряжением сети и сопротивлением нагрузки.

Вид исходной системы уравнений, описывающей процессы в МПУ, определяется положением ключа К схемы на рис. 1,а. При замкнутом ключе состояние схемы описывается системой уравнений (2) и законом полного тока (3).

$$i_{K}R_{K}+i_{H}R_{H}+W_{1}S\frac{dB}{dt}=U_{m}\sin\omega t$$

$$i_{K}R_{K}+W_{2}S\frac{dB}{dt}=0, \quad i_{K}=i_{H}+i_{W_{2}}$$
(2)

$$Hl = W_1 \left(i_{\scriptscriptstyle H} - \frac{1}{K_{\scriptscriptstyle T}} i_{W_2} \right)$$
, где $K_{\scriptscriptstyle T} = \frac{W_1}{W_2}$. (3)

При разомкнутом ключе:

$$i_{\rm H}R_{\rm H} + W_{\rm 1}S(K_{\rm T} + 1)\frac{dB}{dt} = U_m \sin \omega t, \tag{4}$$

$$Hl = i_{\rm H} W_2 (1 + K_{\rm T}).$$
 (5)

Решение уравнений (2)—(5) производится на интервалах, определяемых положением рабочей точки на петле гистерезиса. Постоянные интегрирования определяются припасовыванием соответствующих интервалов [3]. Ток нагрузки будет равен

$$i_{\mathrm{H}} = \frac{H \cdot l}{W_2 (1 + \mathrm{K}_{\mathrm{T}})} \,. \tag{6}$$

Учитывая, что ширина петли гистерезиса мала, т. е. переход с участка II на участок IV (рис. $1,\delta$) происходит за малый промежуток времени, можно принять $\epsilon_1 = \epsilon_2 = \pi$.

Неизвестные углы α_1 и α_s определяются из условия установившегося режима $H_i(\alpha) = H_i(\alpha + 2\pi)$. Тогда $H_1(0) = H_1(2\pi)$, откуда с учетом решения уравнения на первом участке $(0 \leqslant \alpha \leqslant \alpha_1)$

$$K_1 \sin \alpha_1 - \cos \alpha_1 = 0, \tag{7}$$

$$\alpha_1 = \arcsin \sqrt{\frac{1}{K_1^2 + 1}}, \qquad (8)$$

где

$$K_{1} = \frac{l K_{T} \cdot R_{H}(K_{T} - 1) \cdot R_{K}}{\omega \, a_{1} \cdot W_{1} \cdot W_{2} \cdot S[R_{K}(K_{T}^{2} - 1) - R_{H}]}. \tag{9}$$

Из выражений (8) и (9) видно, что угол α_1 не зависит от сопротивления нагрузки (учитывая R_{κ} и K_{τ}) и зависит от параметров схемы и коэффициента наклона насыщенных участков 1 кривой намагничивания. При идеальной кривой намагничивания [1], когда коэффициент наклона α_1 =0, угол α_1 =0.

На рис. 2,a приведена кривая зависимости угла a_1 от a_1 для МПУ на тороидальном сердечнике.

Видно, что α_1 не превышает 90°. При $\alpha_1 \to 0$ или $K_{\tau} = 1$ всегда

Угол α_s определяется из условия периодичности режима путем сопоставления значений напряженности при $\alpha = \alpha_s$ и $\alpha = \alpha_s + 2\pi$.

При этом получено выражение:

$$\frac{K_{4}}{K_{3}^{2}+1} [K_{3} \sin \alpha_{K} - \cos \alpha_{K}] - (K_{3} \sin \alpha_{1} - \cos \alpha_{1}) t^{K_{3}(\alpha_{1}-\alpha_{K})}] t^{K_{5}(\alpha_{K}-\alpha_{S})} +
+ \frac{K_{6}}{K_{5}^{2}+1} [(K_{5} \sin \alpha_{S} - \cos \alpha_{S}) - (K_{5} \cdot \sin \alpha_{1} - \cos \alpha_{1}) t^{K_{5}(\alpha_{K}-\alpha_{S})}] +
+ \frac{K_{8}}{K_{7}^{2}+1} \{ [1 - t^{K_{5}(\alpha_{K}-\pi)}] t^{K_{5}(\pi-\alpha_{S})} - (K_{7} \sin \alpha_{S} - \cos \alpha_{S}) \} = 0.$$
(10)

Здесь K_2 , K_3 , K_4 , K_5 , K_6 , K_7 , K_8 выражены через параметры схемы (рис. 1,a).

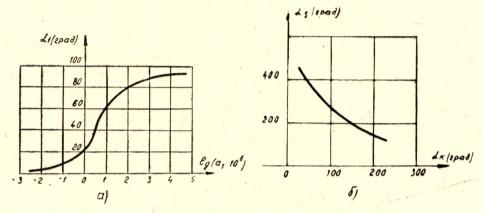


Рис. 2

Уравнение (10) — трансцендентное и решается графоаналитическим методом с применением ЭЦВМ.

На рис. 2,6 показана зависимость $\alpha_s = f(\alpha_k)$ при заданных параметрах схемы. Видно, что значения α_k и α_s неодинаковы, реально $\alpha_k > (\alpha_s - 2\pi)$. Это объясняется наличием наклона участка 1 петли гистерезиса и наличием потерь в цепи ключа.

По полученным выражениям тока нагрузки на различных интервалах можно построить кривые мгновенных значений тока нагрузки на рис. 1,6, которые хорошо подтверждаются осциллограммами. Эти кривые отличаются от аналогичных им при идеальном сердечнике, приведенных в [1]. Наличие гистерезиса играет существенную роль как для физики происходящих процессов, так и для характера кривых напряжений и тока на нагрузке.

По мгновенным значениям токов $i_{\rm H}$ и $i_{\rm K}$ могут быть рассчитаны интегральные характеристики МПУ и определен гармонический состав токов и напряжений.

ЛИТЕРАТУРА

- 1. А. В. Кобзев, В. П. Обрусник, М. Г. Савков. Дискретное управление ферромагнитными устройствами без подмагничивания постоянным током. Изв. ТПИ, т. 243, изд-во ТГУ, 1972.
- 2. В. П. Обрусник, А. В. Кобзев. Способ управления магнитно-полупроводниковым трансформатором с шунтом. Авторское свидетельство, № 276171, кл. 21a² 18/08 от 8/I 1969. Бюллетень изобретений, 1970, № 23.
- 3. И. Н. Лисицкая, Л. А. Синицкий, Ю. М. Шумков. Анализ электрических цепей с магнитными и полупроводниковыми элементами. Киев, «Наукова думка», 1969.