ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 262

1973

АНАЛИТИЧЕСКАЯ ЗАВИСИМОСТЬ ЧАСТОТЫ ПЕРЕГИБА ОТ МАКРОСКОПИЧЕСКИХ ПАРАМЕТРОВ ТРАНЗИСТОРА

В. Е. СТЕННИКОВ

(Представлена научно-техническим семинаром НИИ АЭМ)

Большинство полученных ниже формул будет справедливо при следующих предположениях:

шумы усилителя определяются шумами его первого каскада, в котором транзистор включен по схеме с общим эмиттером;

внутреннее сопротивление источника сигнала является чисто резистивным и генерирует только тепловые шумы;

шумами типа 1/f коллекторного перехода можно пренебречь [1, 2];

шумы резистора нагрузки входного каскада и дробовые шумы обратных токов эмиттера и коллектора можно не учитывать;

в первом каскаде усилителя в качестве усилительного элемента используются кремниевые биполярные транзисторы, полученные по планарной технологии;

транзистор входного шумящего каскада работает в микротоковом режиме.

В диапазоне низких и инфранизких частот шумовые свойства усилителя, в котором, помимо белых шумов, генерируются шумы типа 1/f, лучше всего характеризовать усредненным коэффициентом шума (УКШ). В [1] экспериментальным путем доказано, что шум типа 1/f в кремниевых планарных транзисторах связан с процессами в объеме эмиттерного перехода, а не с поверхностными явлениями.

В [3] на основании того, что шум типа 1/f в эмиттерном переходе определяется рекомбинационной составляющей тока, протекающего через прямосмещенный *p* — *n*-переход, находится формула для эквивалентного шумового генератора тока, причем

$$\bar{i}_{\phi}^{2} \approx 10^{-10} \cdot I_{\vartheta}^{0} \cdot I_{\vartheta} \cdot \frac{df}{f}, \qquad (1)$$

где I_{9}^{0} — предельный ток эмиттера, параметр, характеризующий транзистор. Указанный шумовой генератор в низкочастотной эквивалентной шумовой схеме транзистора, предложенной Джиаколетто, следует подключать между внутренней точкой базы транзистора и выводом эмиттера. Предельный ток эмиттера согласно [3]

$$I_{\mathfrak{s}}^{0} \approx [2(\alpha_{1}-\alpha_{2})/(1/\sqrt{I_{\mathfrak{s}2}}-1/\sqrt{I_{\mathfrak{s}1}})]^{2},$$

(2)

где α_1 (α_2) — коэффициент усиления транзистора по переменному току в схеме с общей базой при токе эмиттера $I_{\mathfrak{s}1}$ ($I_{\mathfrak{s}2}$). Формулы (1), (2) выведены для малых уровней инжекции эмиттера (приблизительно для токов $I_{\mathfrak{s}} < 0,1-1$ м \mathfrak{a}^*).

Частота, разделяющая область белых шумов от области шумов типа 1/f, называется частотой перегиба. Ниже будет дано более строгое определение частоты перегиба. В области шумов типа 1/f спектральная плотность шумов транзистора подчиняется закону $1/f^{\pi}$. Показатель λ обычно колеблется в пределах 0,9-1,4. Экспериментальные исследования [4, 5] показывают, что частота перегиба для кремниевых планарных транзисторов, работающих в микротоковом режиме, весьма сильно зависит от тока эмиттера, уменьшаясь при снижении I_9 . Эта очень важная для практики закономерность косвенно отражена и в (1).

В общем виде усредненный коэффициент шума определяется выражением [6]

$$\overline{F} = \int_{0}^{\infty} F \cdot G df / \int_{0}^{\infty} G \cdot df, \qquad (3)$$

где *F* — дифференциальный коэффициент шума, или просто — коэффициент шума;

G — усиление усилителя по мощности.

Положим, что G не зависит от частоты, и конкретизируем пределы интегрирования в (3), тогда

$$\overline{F} = \frac{1}{f_{\text{BM}} - f_{\text{HM}}} \int_{f_{\text{HM}}}^{f_{\text{BM}}} F \cdot df, \qquad (4)$$

где $f_{\rm BHH}$, $f_{\rm HHH}$ — соответственно верхняя и нижняя граничные частоты шумовой полосы пропускания усилителя. Теоретического выражения для *F*, охватывающего как область белого шума, так и область шума типа 1/f, в известной литературе нет. Воспользуемся эмпирической формулой Верстера [7]

$$F - 1 = (F_0 - 1) \left[1 + \left(\frac{f_c}{f} \right)^{\lambda} \right], \tag{5}$$

где F_0 — коэффициент шума усилителя в области равномерного спектра,

f_c — частота перегиба.

Согласно (5) можно дать определение частоты перегиба. Если $f = f_c$, то F - 1 = 2 ($F_0 - 1$). Тогда частотой перегиба называется частота, задаваемая в области шума типа 1/f, на которой дополнительный коэффициент шума повышается на 3 $\partial \delta$ (в два раза) по сравнению с его значением в области белого шума. Решая совместно (4) и (5), получим

$$\frac{\overline{F}-1}{F_0-1} = 1 + \frac{1}{j_{\text{BII}} - f_{\text{HIII}}} \int_{f_{\text{HIII}}}^{f_{\text{BIII}}} \left(\frac{j_c}{j}\right)^{\lambda} \cdot df.$$
(6)

^{*} Более правильно следует определять меру уровня инжекции через плотность эмиттерного тока.

Найдем выражение для УКШ через макроскопические параметры транзистора. На рис. 1,а приведена эквивалентная шумовая схема входного транзисторного каскада. Транзистор включен по схеме с общим эмиттером, а его шумы отображаются эквивалентной схемой Джиаколетто [8]. Выражение для i^2_{ϕ} задано в (1). Емкость C_9 — зарядная, она не участвует в транзисторном механизме передачи [9], поэтому гене-ратор ai_9' зависит только от тока, протекающего через r_9 . По сигнальному графу (рис. 1,6) после ряда преобразований опре-

делим УКШ:

$$\overline{F} \approx 1 + \frac{r_{6}}{R_{r}} + \frac{(R_{r} + r_{6})^{2}}{2R_{r} \cdot r_{9}\alpha} \cdot \left[(1 - \alpha)^{2} \left(1 + \frac{2r_{9}}{R_{r} + r_{6}} \right) + \frac{r_{9}^{2}}{(R_{r} + r_{6})^{2}} \right] \cdot \left[1 + \frac{\omega C_{0}^{2} \cdot r_{9}^{2}}{2(1 - \alpha)^{2}} \right] + R_{r} \cdot I_{9} \cdot \varepsilon', \qquad (7)$$

где

$$C_{0} = C_{9} + C_{\kappa},$$

$$\varepsilon' = 6 \cdot 10^{9} \cdot I_{9}^{0} \cdot \ln(f_{\text{BM}}/f_{\text{HM}}) / (f_{\text{BM}} - f_{\text{HM}}).$$
(8)

Последнее слагаемое (7) характеризует шумы типа 1/f транзистора. Если выполняется неравенство

$$r_{\mathfrak{s}} < < \sqrt{2} \cdot \frac{1-\alpha}{\omega C_0}, \qquad (9)$$

117

то в (7) от частоты зависит только последнее слагаемое. Поскольку величина распределенного сопротивления базы $r_5 = 50 \div 200$ ом и оптимальное сопротивление генератора в режиме микротоков ($J_9 \ll 100 \ mka$) обычно больше одного килоома, то можно считать

$$R_{\rm r} \gg r_{\rm 6}. \tag{10}$$

С учетом (9) и (10) преобразуем (7) к виду

$$\overline{F} \approx 1 + \frac{r_{\delta}}{R_{r}} + \frac{1}{\beta} + \frac{r_{\vartheta}}{2R_{r}} + \frac{R_{r}}{2r_{\vartheta} \cdot \beta} + R_{r} \cdot I_{\vartheta} \cdot \varepsilon'.$$
(11)

Заметив, что сумма 2, 3, 4, 5-го слагаемых последнего выражения характеризует дополнительный коэффициент шума $(F_0 - 1)$ в области равномерного спектра, приведем (11) к виду

Рис. 2. Зависимость частоты перегиба от тока эмиттера входного транзистора; **О**— тока эмиттера входного транзистора; **О** эксперимент для транзистора № 2; △— эксперимент для транзистора № 4; № 27; □—№ 36.

где є с учетом (8) равно

$$\varepsilon = 2I_{\mathfrak{s}} \cdot r_{\mathfrak{s}} \cdot \varepsilon' \approx 31 \cdot 10^7 \cdot I_{\mathfrak{s}}^0 \cdot \ln(I_{\mathfrak{B}\mathfrak{m}}/f_{\mathfrak{H}\mathfrak{m}})/(f_{\mathfrak{B}\mathfrak{m}}-f_{\mathfrak{H}\mathfrak{m}}).$$

Сравнивая уравнения (12) и (6), приняв в последнем $\lambda = 1$, найдем частоту перегиба:

$$f_{\rm c} \approx 31 \cdot 10^7 \cdot I_{\mathfrak{s}}^{0} \left[\frac{1}{\beta} + \frac{r_{\mathfrak{s}}^2}{R_{\rm r}^2} + \frac{2 r_{\mathfrak{s}}}{R_{\rm r}} \left(\frac{1}{\beta} + \frac{r_{\rm f}}{R_{\rm r}} \right) \right], \tag{13}$$

		в при I _{э,} мка				1 ⁰ , мка
№ транзис- тора	Тип транзисто- ра	1	10	31	100	$\left(\begin{array}{c}I_{\mathfrak{P}_1}=31\ \mathrm{MKa}\\I_{\mathfrak{P}_2}=100\ \mathrm{MKa}\end{array}\right)$
2	2T319B	37	72	88	125	0,0060
27	»	33	66	82	114	0,0073
36	»	38	75	96	135	0,0053
43	2T306F	22	35	48	65	0,022
51	>	23	37	49	68	0,020
4	2T312B	20	38	55	73	0,018
5		21	40	55,	76	0,015

Таблица

118

которая прямо пропорционально зависит от предельного тока эмиттера. В таблице приведены коэффициенты усиления ряда кремниевых транзисторов и значения предельного тока эмиттера, рассчитанные по (2). Коэффициенты усиления β рассчитаны по измеренным значениям β (квазистатический коэффициент усиления транзистора в схеме с общим эмиттером) с помощью формул, приведенных в [10].

Зависимость частоты перегиба от тока эмиттера в (13) неявная: через коэффициент усиления β и сопротивление $r_{\mathfrak{I}}$. Если уменьшается ток эмиттера, то снижается β и увеличивается $r_{\mathfrak{I}}$. При постоянном R_r это приводит к понижению частоты перегиба. На рис. 2 изображены расчетные кривые, характеризующие зависимость частоты перегиба от тока эмиттера и построенные для бескорпусных кремниевых планарных транзисторов типа 2T319B. Здесь же показаны результаты расчета по экспериментальным данным. Для корпусных транзисторов типов 2T306Г, 2T312B экспериментальные результаты значительнее отличаются от расчетных по сравнению с 2T319B, что видно из рис. 3.

Выводы

1. Частота перегиба в режиме микротоков существенно зависит от тока эмиттера транзистора, принимая значения вплоть до единиц герц.

2. Экспериментальные исследования, проведенные для кремниевых планарных транзисторов (типов 2Т319В, 2Т306Г, 2Т312В), показывают, что полученные теоретические зависимости более удовлетворительно подтверждаются для бескорпусных транзисторов типа 2Т319В.

3. Для всех исследованных транзисторов расхождение расчетных и экспериментальных результатов, как правило, увеличивается по мере снижения эмиттерного тока.

ЛИТЕРАТУРА

1. Conti Mario. Surface and Bulk Effects in Low frequency noise in NPN Planar transistor, "Solid-state Electronics", 1970, vol. 13, No. 14, November.

2. В. М. Придорогин. Физическая интерпретация некоторых шумовых характеристик транзисторов. В сб.: «Полупроводниковые приборы и их применение», под ред Я. А. Федотова, вып. 21, Изд-во «Советское радио», 1969.

3. А: К. Нарышкин. Противошумовые коррекции в широкополосных усилителях на транзисторах. «Связь», 1969.

4. Herchner D. Rauschkenwerte eines modernen Silizium—Planar—Transistor im Niederfrequenzgebiet, "Frequenz", 1967, № 2.

5. Wiggins M. J., An experimental study of 1/f noise in transistor, "IEE Intern. Convent. Rec.", 1964, v. 12, № 2

6. Шумы в электронных приборах, под ред. Л. Д. Смулллинаи Г. А. Хаусса, «Энергия», 1964.

7. Т. С. Верстер. Низкочастотный шум УПТ, «ТИИЭР», 1966, т. 54, № 9.

8. А. Ван-дер-Зил. Флуктуационные явления в полупроводниках. Госэнергоиздат, 1961.

9. Транзисторы, под ред. И. Г. Бергельсона, Ю. А. Каменецкого, И. Ф. Николаевского. «Советское радио», 1968.

10. А. И. Сетюков. Некоторые параметры транзисторов в режиме микротоков. В сб.: «Полупроводниковые приборы в технике электросвязи», под ред. И. Ф. Николаевского, вып. I, «Связь», 1968.