ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 265

1973

ИССЛЕДОВАНИЕ НИЗКОЧАСТОТНОГО ИНДУКТИВНОГО ПАРАМЕТРОНА БЕЗ ПОДМАГНИЧИВАНИЯ ПОСТОЯННЫМ ТОКОМ

А. В. ШМОЙЛОВ, А. Х. МУСИН

(Представлена научным семинаром кафедры электрических станций)

В настоящее время большое внимание уделяется исследованию накопительных элементов, выполненных на параметрическом принципе. Наибольшее распространение получили высокочастотные индуктивные параметроны Гото с выходом на второй субгармонике в качестве бинарных элементов цифровых вычислительных машин. Простота, высокая надежность и специфические свойства индуктивных параметронов делают возможным их применение также в некоторых устройствах автоматики, телемеханики и релейной защиты.

Применение здесь высокочастотных параметронов нецелесообразно, так как быстродействие в ряде случаев несущественно, а кроме того, они требуют для питания дорогостояших источников. С точки зрения максимальной простоты и дешевизны заслуживает внимания индуктивный параметрон без подмагничивания постоянным током с выходом на основной частоте. При питании такого параметрона током промышленной частоты применение его еще более упрощается, так как сигнал для управления фазой колебаний может быть сформирован в любой части установки, отдельные элементы которой связаны электрическим или электромагнитным путем. Представляется возможным также использование такого параметрона, как элемент релейного действия в системах автоматики и телемеханики.

Теоретическое и экспериментальное исследование параметрона без подмагничивания постоянным током нами предпринято для выяснения физической природы явлений и установления количественных соотношений с целью разработки методов расчета.

Схема, используемая нами, исследована в работах [1, 2] как пример существенно нелинейной системы. Однако полученные там результаты носят в большей степени качественный характер.

На рис. 1 изображена схема индуктивного параметрона без подмагничивания постоянным током. На нем обозначено: w₁ — число витков обмоток возбуждения, w₂ — число витков контурных обмоток, i₁ ток возбуждения, u_в — напряжение возбуждения, i₂ — ток в колебательном контуре.

Напряженности в сердечниках дросселей Д₁ и Д₂ равны

$$h_{1} = \frac{i_{1}w_{1} + i_{2}w_{2}}{l} ,$$

$$h_{2} = \frac{i_{1}w_{1} - i_{2}w_{2}}{l} ,$$
(1)

где 1 — длина средней силовой магнитной линии. Потокосцепления соответственно обмоток возбуждения и контурных обмоток:

$$\Psi_{11} = -\frac{W_1}{2} [2S \,\mu_1 \,h_1 + k_{01} (h_1 + h_2) \,l],$$

$$\Psi_{12} = -\frac{W_1}{2} [2S \,\mu_2 \,h_2 + k_{01} (h_1 + h_2) \,l],$$
(2)

$$\Psi_{21} = -\frac{W_2}{2} \cdot \left[2 \,\mathrm{S}\,\mu_1\,\mathrm{h}_1 + \,\mathrm{k}_{02}\,(\mathrm{h}_1 - \,\mathrm{h}_2)\,\mathrm{I} \right],$$

$$\Psi_{22} = -\frac{W_2}{2} \left[2 \,\mathrm{S}\,\mu_2\,\mathrm{h}_2 + \,\mathrm{k}_{02}(\mathrm{h}_1 - \,\mathrm{h}_2)\,\mathrm{I} \right], \qquad (3)$$

где

ψ₁₁ и ψ₁₂ — потокосцепления обмоток возбуждения соответственно первого и второго дросселя;

ψ₂₁ и ψ₂₂ — то же для контурных обмоток;

S — площадь поперечного сечения активной стали;

μ₁ и μ₂ — текущие значения магнитных проницаемостей;

k₀₁ и k₀₂ — проводимости рассеяния обмотки возбуждения и контурной обмотки одного дросселя.

Уравнения электрического равновесия:

$$i_{1}R_{1} + \frac{d\Psi_{11}}{dt} + \frac{d\Psi_{12}}{dt} = u_{B},$$

$$i_{2}R_{2} + \frac{d\Psi_{21}}{dt} - \frac{d\Psi_{22}}{dt} + \frac{1}{C}\int i_{2}dt = 0,$$
(4)

где

2

С — емкость конденсатора колебательного контура,

R₁ -- активное сопротивление цепи возбуждения.

R₂ — активное сопротивление колебательного контура.

Подставляя в (4) значения величин по выражениям (1÷3) и приняв обозначения

$$\frac{1}{2w_2}R_2 = \rho; \quad \frac{R_1w_2}{R_2w_1} = \lambda; \quad \frac{1}{2w_2C} = \beta; \quad 2w_1w_2k_{01}C = q$$
$$w_2S = \delta; \quad \frac{w_1}{w_2} = k_T; \quad \mu_1h_1 = b_1; \quad \mu_2h_2 = b_2,$$

получим

$$\begin{cases} \left(\lambda\rho + q\beta \frac{d}{dt}\right) \left(\frac{b_1}{\mu_1} + \frac{b_2}{\mu_2}\right) + k_T \delta \frac{d}{dt} (b_1 + b_2) = u_B \\ (\rho + \beta \int dt) \left(\frac{b_1}{\mu_1} - \frac{b_2}{\mu_2}\right) + \delta \frac{d}{dt} (b_1 - b_2) = 0. \end{cases}$$
(5)

Нелинейные уравнения (5) описывают все многообразие колебаний в системе по рис. 1.

Введем в уравнения (5) степенную функцию, аппроксимирующую основную кривую намагничивания $b = \mu_{\kappa} h^{\kappa}$, где К — дробное число, числитель и знаменатель которого — нечетные числа, μ_{κ} — постоянный коэффициенты аппроксимирующей функции определены по основной кривой намагничивания методом выбранных точек.

Пренебрегаем рассеянием и принимаем закон изменения напряжения возбуждения в виде

$$u_{\rm B} = U_{\rm m} \cos\left(\omega t + \psi\right),$$

где Um и ф — соответственно амплитуда и фаза этого напряжения. При принятых условиях уравнения (5) примут вид:

$$\frac{1}{\mu_{K}^{\frac{1}{K}}} \lambda \cdot p \frac{d}{dt} \left(b_{1}^{\frac{1}{K}} + b_{2}^{\frac{1}{K}} \right) + k_{T} \delta \frac{d}{dt} \left(b_{1} + b_{2} \right) = U_{m} \cos\left(\omega t + \psi\right), \quad (6)$$

$$\frac{1}{\frac{1}{w_{V}^{\frac{1}{K}}}}(\rho + \beta \int dt) \left(b_{1}^{\frac{1}{K}} - b_{2}^{\frac{1}{K}} \right) + \delta \frac{d}{dt} (b_{1} - b_{2}) = 0.$$
 (7)

Частное решение системы (6), (7) зададим в виде

$$b_1 = B_1 \cos \omega t, \tag{8}$$

 $b_2 = B_2 \cos(\omega t + \theta),$ (9)

где

В₁ и В₂ — амплитуды индукций в сердечниках, Θ — угол между амплитудами.

Дифференцируя (7) и подставляя затем в (6) и (7) решения (9), получим два тождества. Придавая в тождествах аргументу определен- $\frac{\pi}{2}$ ные значения (например, wt = 0 и wt = и производя все необходимые преобразования, приходим к системе трех трансцендентных уравнений, связывающих коэффициенты решений (9):

$$B_{2} = \begin{bmatrix} \frac{\rho \sin \frac{1}{K} - 2}{\mu_{K}^{\frac{1}{K}} \cdot K \delta \omega} + \frac{\beta \sin \frac{1}{K} - 1}{\mu_{K}^{\frac{1}{K}} \delta \omega^{2}} \end{bmatrix}^{\frac{K}{K-1}}, \quad (10)$$

$$-\frac{\beta}{\mu_{K}^{\frac{1}{K}}} B_{1}^{\frac{1}{K}} - \delta \omega^{2} B_{1} = \frac{\beta}{\mu_{K}^{\frac{1}{K}}} B_{2}^{\frac{1}{K}} \cos \frac{1}{K} \theta - \mu_{K}^{\frac{1}{K}}$$

$$-\delta \omega^{2} B_{2} \cos \theta - \frac{\rho \omega}{\mu_{K}^{\frac{1}{K}} \cdot K} B_{2}^{\frac{1}{K}} \cos \frac{1}{K} - 1}{\theta \sin \theta}, \quad (11)$$

$$\left(\frac{\lambda\beta}{\frac{1}{\mu_{K}}}\right)^{2} \left[B_{1}^{\frac{2}{K}} + 2B_{1}^{\frac{1}{K}}B_{2}^{\frac{1}{K}}\cos^{\frac{1}{K}}\theta + B_{2}^{\frac{2}{K}}\left(\cos^{\frac{2}{K}}\theta + \sin^{\frac{2}{K}}\theta\right)\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}+1}\left(\sin^{\frac{1}{K}}\theta\cos\theta - \frac{1}{\mu_{K}}\right)\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}+1}\left(\sin^{\frac{1}{K}}\theta\cos\theta - \frac{1}{\mu_{K}}\right)\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}+1}\left(\sin^{\frac{1}{K}}\theta\cos\theta - \frac{1}{\mu_{K}}\right)\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}+1}\left(\sin^{\frac{1}{K}}\theta\cos\theta - \frac{1}{\mu_{K}}\right)\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}+1}\left(\sin^{\frac{1}{K}}\theta\cos\theta - \frac{1}{\mu_{K}}\right)\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}+1}\left(\sin^{\frac{1}{K}}\theta\cos\theta - \frac{1}{\mu_{K}}\right)\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}}\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}}\right] + \frac{2\lambda\rho k_{T}\delta\omega}{\frac{1}{\mu_{K}}} \left[B_{1}B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta - B_{1}^{\frac{1}{K}}B_{2}\sin\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}\theta + B_{2}^{\frac{1}{K}}\sin^{\frac{1}{K}\theta + B_{2}^{\frac{1}{K}}\cos^{\frac{1}{K}\theta + B_{2}^{\frac{1}{K}}\cos^{\frac{1}{K}\theta + B_{2}^{\frac{1}{K}$$

 $-\sin\theta\cos^{\overline{K}}\theta/\left] + (k_{T}\delta\omega)^{2}(B_{1}^{2} + 2B_{1}B_{2}\cos\theta + B_{2}^{2}) = U_{m}^{2}$ (12)

Система (10) \div (12) определена при задании амплитуды напряжения возбуждения U_m , при которой в колебательном контуре возникают колебания (порог возбуждения). Расчет порога возбуждения производится, исходя из предположения равенства средней собственной частоты нелинейного колебательного контура (Ω_{cp}) частоте параметрических колебаний ω . Расчет ведется в следующей последовательности: 1) используя принятую аппроксимацию, составляем выражение для квадрата собственной частоты колебательного контура до возникновения колебаний ($b_1=b_2=b$); 2) определяется средняя собственная частота за период; 3) в полученном выражении при $\Omega_{cp} = \omega$ определяется амплитуда индукции $B_{\rm h}$, соответствующая $U_{\rm m}$.

$$\mathsf{B}_{\mathsf{H}} = \left[\frac{2\,\Omega^{2}_{\mathsf{cp}}\mathsf{Sw}_{2}{}^{2}\mathsf{K}\,\mu_{\mathsf{K}}^{\frac{1}{\mathsf{K}}}\,\sqrt{\pi}\,\mathsf{C}\,\Gamma\left(\frac{1}{2\mathsf{K}}+0,5\right)}{1\,\Gamma\left(\frac{1}{2\mathsf{K}}\right)}\right]^{\frac{\mathsf{K}}{1-\mathsf{K}}},\tag{13}$$

где Г — гамма-функция.

Полагая в (12) $B_1 = B_2 = B_{\rm H}$ и $\Theta = 0^{\circ}$ (параметрические колебания отсутствуют), определяем $U_{\rm m}$

$$U_{\rm m} = 2 \left[\left(\frac{\lambda \beta}{\frac{1}{\mu_{\rm K}^{\rm K}}} B_{\rm H}^{\frac{1}{\rm K}} \right)^2 + (k_{\rm T} \, \delta \, \omega \, B_{\rm H})^2 \right]^{\frac{1}{2}}. \tag{14}$$

Для параметрона со следующими исходными данными 1=0,182 м

$$\begin{split} w_2 &= 1000 \ \text{sum.}, \quad S = 0,176 \cdot 10^{-3} \ \text{m}^2, \quad \omega = 314 \ \frac{1}{ce\kappa} \ , \\ \Omega_{cp} &= 314 \ \frac{1}{ce\kappa} \ , \quad k_T = 0,8 \qquad \qquad \delta = 0,176 \ \text{m}^2 \ \text{sum.}, \\ R_1 &= 39 \ \text{om}, \qquad R_2 = 31,4 \ \text{om}, \qquad \rho = 2,86 \cdot 10^{-3} \ \frac{\text{m} \cdot \text{om}}{\text{sum.}} \ , \\ \lambda &= 1,53, \qquad \mu_K = 0,33, \qquad \qquad K = 0,185, \ w_1 = 800 \ \text{sum.} \end{split}$$

подсчитаны значения U_m по формулам (13), (14) в диапазоне емкостей С=(2÷40)10⁻⁶ ф. Результаты расчетов приведены на рис. 2 (сплошная

12 Заказ 8

кривая). Здесь же приведены данные экспериментов (пунктирная кривая). Из рис. 2 видно, что экспериментальные величины U_m превышают расчетные не больше, чем на 8%. Увеличение сопротивления колебательного контура в 2 раза не приводит к заметному изменению этой разницы.

Приведем расчет амплитуд индукций B_1 , B_2 и угла между ними Θ в установившемся режиме колебаний для параметрона, данные которого приведены выше, при емкостях конденсатора колебательного контура, равных 12, 16 и 20 *мкф*. Вычисления будем проводить в следующем порядке: 1) по выражению (10) вычисляем значения B_2 в функции Θ ; 2) подставляя известные значения B_2 и Θ в (11), рассчитываем B_1 ; 3) подставляя B_1 , B_2 , Θ в (12), вычисляем левую часть (Л) уравнения (12). Результаты вычислений B_1 , B_2 , Л в функции Θ приведены на рис. 3.

Рис. З.

Откладывая на кривой Л величину U_m^2 , рассчитанную по (14), определяем Θ и по Θ находим B_1 и B_2 . Точность расчета зависит от точности определения U_m . Так как расчетные значения U_m отличаются от экспериментальных, то полученные значения величин необходимо уточнить. Это уточнение можно произвести с помощью уравнения энергетического баланса колебательного контура за период

$$W_{R_2} + W_L = 0,$$
 (15)

где

W_{R2} — энергия, потребляемая в активном сопротивлении колебательного контура за период колебаний,

W_L — энергия, вносимая в колебательный контур каждый период за счет модуляции индуктивности.

При принятой аппроксимации основной кривой намагничивания и форме изменения индукции в сердечниках (9) уравнение (15) через искомые величины выражается таким образом:

$$\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}\omega}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}^{\frac{1}{K}}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{1}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{2}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{1}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{2}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{2}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{2}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{2}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{2}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-B_{1}B_{2}^{\frac{2}{K}}\varphi\left(\theta,K\right)\right]-\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}}\left[N\left(B_{1}^{\frac{2}{K}}+B_{2}^{\frac{2}{K}}\right)-\frac{1}{W_{2}\mu_{K}^{\frac{2}{K}}}\right]$$

где пово оп

Расчеты по (15) приведены на рис. 3 (кривые, пересекающие ось Θ). При W_{R2}+W_L=0 получаем уточненное значение угла Θ и по нему с помощью кривых рис. 3 определяем уточненные значения B₁, B₂ и U_m.

Ниже в табл. 1 приводятся результаты расчета и экспериментальные данные для рассматриваемого параметрона. Как видно из таблицы, расчетные и экспериментальные данные достаточно близко совпадают. Следовательно, выведенные выше соотношения могут быть использованы для расчета параметрона.

№ п.п	Название величины	Емкость (мкф)	Обозна- чение	Един. изме- рения	Расчетные данные	Экспери- ментальн. данные
1.	Индукция в сердеч- нике первого дросселя	12 16 20	B ₁	<u> </u>	1,46 1,545 1,615	1,5 1,56 1,53
2.	Индукция в сердеч- нике второго дросселя	12 16 20	B_2	<u>вб</u> <u>м</u> ²	1,56 1,63 1,745	1,6 1,8 1,98
3.	Угол между ампли- тудами ин- дукций	12 16 20	Θ	град.		86 86 83
4.	Амплитуда напряжения возбуждения	12 16 20	Um	в	98,3 103 111	98 105 112
.5.	Действующее значе- ние тока в колеба- тельном контуре	12 16 20	I 2	a	0,238 0,305 0,427	0,275 0,4 0,48
6.	Действующее значе- ние тока в цепи возбуждения	12 16 20	II	а	0,297 0,384 0,54	0,36 0,52 0,75

ЛИТЕРАТУРА

1. Т. Хаяси. Вынужденные колебания в нелинейных системах. ИЛ., 1957. 2. Л. А. Бессонов. Нелинейные электрические цепи. «Высшая школа», 1964.

3. Л. А. Бессонов. Теоретические основы электротехники. «Высшая школа», 1964.

