ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 266

К РАСЧЕТУ НАКОПИТЕЛЯ НА МАГНИТНОЙ ЛЕНТЕ СИСТЕМЫ ЦИФРОВОЙ РЕГИСТРАЦИИ

А. В. ТРИХАНОВ, А. Н. ОСОКИН, П. П. ГРИГОРЬЕВ

(Представлена научным семинаром кафедры вычислительной техники)

В настоящее время большое значение придается применению электронных цифровых вычислительных машин для обработки результатов физических экспериментов [2]. Для обработки больших массивов данных, поступающих в непрерывной форме, требуется автоматизация подготовки информации для непосредственного ввода в ЭЦВМ. Регистрацию экспериментальных данных на перфоленту и перфокарту возможно осуществить только для медленно протекающих процессов вследствие малого быстродействия перфораторов. Регистрация экспериментальных данных на стандартных накопителях на магнитной ленте (НМЛ) является громоздким и дорогим средством, она возможна только в темпе работы НМЛ. Существуют различные варианты решения этой проблемы, описанные в [3—5]. Наличие многих вариантов обусловливается различными обстоятельствами и требованиями, предъявляемыми к накопителям со стороны экспериментов.

Для широкого и успешного использования универсальных электронных вычислительных машин для исследования различного рода аналоговых сигналов, кроме фиксирования сигналов на тот или иной носитель, необходимо иметь удобные средства ввода их в ЭЦВМ. Имеющиеся у отечественных ЭЦВМ средства ввода информации не всегда удовлетворяют требованиям, обусловленным спецификой обрабатываемых сигналов. Это относится, в частности, к электрическим сигналам с широким частотным и динамическим диапазоном.

Помимо чисто технических данных аппаратуры ввода необходимо обеспечить «неприкосновенность» ЭЦВМ. Это особенно важно в тех случаях, когда лаборатория или отдел, проводящие исследования, не имеют собственной ЭЦВМ, а пользуются услугами вычислительного центра. Поэтому ввод сигналов в ЭЦВМ можно производить через внешнюю память, а именно, через накопитель на магнитной ленте, поскольку при этом никаких переделок ЭЦВМ не требуется.

Система цифровой регистрации должна обеспечить все необходимые преобразования и запись сигнала в цифровом виде на МЛ, которая затем может быть установлена в НМЛ машины, считана и по заданной программе обработана. Блок-схема системы цифровой регистрации непрерывных электрических сигналов, разработанной на кафедре вычислительной техники ТПИ, представлена на рис.. 1. В эту систему

входят: двухканальный коммутатор непрерывных электрических сигналов, аналого-цифровой преобразователь АЦП и накопитель на магнитной ленте НМЛ.

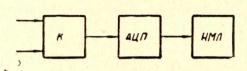


Рис. 1. Блок-схема системы цифровой регистрации

При проектировании системы требуется определить длину l и скорость v передвижения ленты, плотность записи P на ленте, максимальное количество зон в зависимости от параметров сигналов, подаваемых в АЦП, времени эксперимента t_3 . Для расчета НМЛ можно

использовать следующие выражения:

$$v \leqslant \frac{l}{t_{\mathfrak{I}}},$$
 $v \leqslant \frac{f_{\kappa}}{p},$

где $f_{\rm K}$ — частота квантования в АЦП.

В соответствии с теоремой Котельникова [1] $f_{\rm K} = 2f_{\rm c}$, т. е. удвоенной предельной частоте сигнала, снимаемого с датчика. С учетом количества $N_{\rm K}$ каналов коммутатора $f_{\rm K} = 2N_{\rm K}f_{\rm C}$.

Из предыдущего следует, что

$$l \geqslant \frac{2N_{\kappa}f_{c}t_{9}}{P}.$$

При постоянном начальном номере зоны можно определить максимальный номер зоны N из следующего соотношения:

$$t = \Delta t_{\rm p} + \Delta T N + \Delta t_{\rm T}$$

где t — время движения ленты от начала до конца,

 $\Delta t_{
m p},~\Delta t_{
m T}$ — время разгона и время торможения ленты соответственно,

 ΔT — время движения участка зоны.

Время ΔT равно:

$$\Delta T = \Delta T_{\scriptscriptstyle \mathrm{3H}} + rac{E}{f_{\scriptscriptstyle \mathrm{K}}} + 2\Delta T_{\scriptscriptstyle \mathrm{II}},$$

где $\Delta T_{\rm 3H}$ — время прохождения номера зоны;

 $\Delta T_{\rm II}$ — время прохождения промежутка между концом и началом соседних зон, промежутка между номером зоны и началом записи информации;

E — количество строк в зоне (для машины M-220 M, E = 24576).

Ввиду малости величин $\Delta t_{\rm p},~\Delta t_{\rm T},~\Delta T_{\rm 3H}$ и $\Delta T_{\rm II},$ по сравнению с $\Delta T N,$ ими можно пренебречь в приведенных выше выражениях. С учетом этого

$$N = \frac{t}{\Delta T} = \frac{f_{\kappa} t}{E} .$$

Ясно, что такая оценка является несколько завышенной. Пусть $t=100~\kappa$, где $\kappa=1,~2,~3...$, тогда

$$N = 4,15 \ \kappa f_{\rm K}$$
.

В табл. 1 приведены данные расчета N, v, P, ΔT , длины участка зоны магнитной ленты Δl , времени эксперимента $t_{\rm e}$ и длины ленты l для трех значений κ и десяти значений $f_{\rm k}$. Скорости движения ленты $0.06~m/ce\kappa$ и $0.7~m/ce\kappa$ выбраны с учетом максимальной плотности

Таблица 1

f_{κ} , κ eų	к	N	υ, м/сек	Р, им/мм	ΔТ, сек	$\Delta l, M$	t_{9} , $ce\kappa$	1, м
0,2	1	0,8				·V	123	8
	2	1,7	0,06	3,3	123	7,4	246	15
	3	2,5			× ×		369	23
0,4	1	1,7					123	8
	2	3,3	0,06	6,7	61,5	3,7	246	15
	3	5					308	19
0,8	1	3,3					123	8
	2	6,6	0,06	13,7	30,8	1,8	216	13
	3	10		9.2			308	18
1,2	1	5	P. Salak				103	73
	2	10	0,7	1,7	20,5	14,5	205	145
	3	15					308	218
1,6	1	6,6					108	75
	2	13,5	0,7	2,3	15,4	10,4	215	150
	3	19,8					308	214
2	1	8,3					111	78
	2	16,6	0,7	2,9	12,3	8,6	209	146
	3	24,9					308	216
4	1	16,6		11			106	74
	2	33,2	0,7	5,7	6,2	4,3	211	146
	3	49,8					308	215
6	1	24,9		7	,		102	73
	2	49,8	0,7	8,6	4,1	2,9	205	145
	3	74,7					308	218
8	1	33,2	i				106	75
	2	66,4	0,7	11,4	3,1	2,2	208	148
	3	99,6					310	220
10.	1	41,5					105	72
	2	83,0	0,7	14,3	2,5	1,7	208	141
	3	124,5	View Ministry				313	211

ЛИТЕРАТУРА

1. Б. В. Анисимов, В. Н. Четвериков. Основы теории и проектирования ЭЦВМ. М., «Высшая школа», 1970.

2. В. М. Глушков. Перспективы применения средств вычислительной техники.

- В кн.: «Интерорготехника 66». М., Онтиприбор, 1966. 3. Н. М. Қазачук и др. Устройство для регистрации экспериментальных данных на магнитной ленте. Сб. «Вычислительные системы», вып. 35, Новосибирск, «Наука»,
- 4. В. М. Кевлишвили и др. Устройство ввода в вычислительную машину М-20. Сб. «Вопросы технической эксплуатации вычислительных машин», вып. 2. Изд-во АН СССР, 1969.

 5. А. И. Стапиловский и др. Цифровой накопитель спектров на магнитной
- ленте с обработкой на вычислительной машине. Сб. «Вопросы технической эксплуатации вычислительных машин», вып. 2. Изд-во АН СССР, 1969.