ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМЕНИ С. М. КИРОВА

Том 267

ИССЛЕДОВАНИЕ НЕКОТОРЫХ ЭЛЕКТРОФИЗИЧЕСКИХ СВОИСТВ ЭПОКСИДНЫХ КОМПАУНДОВ ГОРЯЧЕГО ОТВЕРЖДЕНИЯ

Р. М. КЕССЕНИХ, Л. А. КОРШУНОВА, А. В. ПЕТРОВ

(Представлена научно-техническим семинаром кафедры электроизсляцинной и кабельной техники)

В настоящее время эпоксидные компаунды нашли широкое применение в электротехнике в качестве изоляционного материала. Для снижения хрупкости в эпоксидные компаунды вводят пластификаторы и модификаторы, которые, как известно, изменяют электрофизические свойства полимеров, сильно снижают их температуру стеклования Т а также оказывают существенное влияние на подвижность надмолекулярных структур полимеров [1, 2]. В связи с тем, что влияние пластификации и модифицирования на электрофизические свойства термореактивных эпоксидных полимеров изучено недостаточно [3-5], а характер надмолекулярных структур пластифицированных и модифицированных эпоксидных полимеров совершенно не изучен, представляло интерес изучить влияние пластификации и модифицирования на электропроводность эпоксидных полимеров, их температуру стеклования Т., а также на характер изменения надмолекулярных структур эпоксидных полимеров. Кроме того, представляло интерес оценить механизм пластификации эпоксидного полимера и найти корреляцию между электрофизическими свойствами эпоксидных полимеров и характером изменения их надмолекулярных структур.

Мегодика эксперимента

Исследования проводили на эпоксидном полимере на основе диановой эпоксидной смолы ЭД-6, отвержденной метилтетрагидрофталевым ангидридом (МТГФА), который вводился в количестве 62 весовых частей на 100 в. ч. ЭД-6. Отверждение образцов проводили по ступенчатому режиму при температуре 120°C в течение 2 часов и 150°C — в течение 4 часов. В качестве пластификаторов и модификаторов использовали дибутилфталат (ДБФТ), полиэфиракрилат МГФ-9 и алифатическую эпоксидную смолу ДЭГ-1. Температуру стеклования эпоксидных полимеров определяли диэлектрическим методом. Остаточный ток измеряли по методике, описанной ранее [6].

Надмолекулярные структуры изучались при помощи электронного микроскопа УЭМВ-100А. Электронно-микроскопическому исследованию подвергали угольные реплики с поверхности скола, оттененные платиной. Скол осуществлялся после охлаждения образцов в жидком азоте.

Инфракрасные спектры снимали на спектрофотометре ИКС-14 в области 600—4000 см-1 (мелкоизмельченный порошок запрессовывали в Кв г).

Обсуждение результатов

На рис. 1 приведены зависимости $\lg \rho_n$ от напряженности электрического поля Е для непластифицированного (сплошные линии) и пластифицированного эпоксидного полимера (пунктирные линии). Зависимости Igo от Е подчиняются закону Пуля. При введении пластификаторов и модификаторов снижается величина о и изменяется наклон прямых $\lg \rho = f(E)$. Для всех исследуемых полимеров были рассчитаны коэффициенты Пуля по методу наименьших квадратов. Коэффициен-

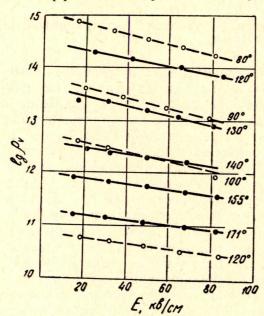


Рис. 1. Зависимость Ідрот напряженности электрического поля для чистого эпоксидного полимера (сплошные линии) и пластифицированного 20 в. ч. ДБФТ (пунктирные линии).

ты Пуля зависят от вида и количества вводимых пластификаторов и модификаторов, причем с увеличением содержания пластификаторов наблюдаемые максимумы на температурных зависимостях пулевского коэффициента сдвигаются в сторону понижен-

ных температур.

Удельное объемное сопротивление ρ_{v} при температуре до 70— 80° С остается на довольно высоком уровне (порядка 1013 ом. см) как для пластифицированного, так и для модифицированного (даже 40 в. ч.) эпоксидного полимера. При температуре выше 80° С наблюдается резкое снижение ру эпоксидного полимера, особенно пластифицированного дибутилфталатом. Так, например, при введении 40 в. ч. ДБФТ ρ_v полимера при 100° С снижается до $1 \cdot 10^{11}$ om · cm, B to время как о непластифицированного полимера

остается на 2,5 порядка выше. У полимера, модифицированного МГФ-9,

р и на порядок выше, чем у пластифицированного ДБФТ.

Характер изменения температуры стеклования Т с от содержания пластификаторов и модификаторов представлен на рис. 2. Введение в эпоксидный полимер ДБФТ до 30 в. ч. и полиэфира МГФ-9 до 20 в. ч. сильно снижает температуру стеклования полимера, при дальнейшем увеличении содержания ДБФТ и МГФ-9 Т снижается незначительно.

Температура стеклования эпоксидного полимера, модифицированного ДЭГ-1, монотонно снижается с ростом содержания алифатической смолы.

В настоящее время считается, что ДБФТ не реагирует ни со смолой, ни с отвердителем, а полиэфир МГФ-9 ограниченно взаимодействует с отвердителем. При совместном отверждении эпоксидных диановой и алифатической смол образуются сшитые полимеры с чередующимися ароматическими и алифатическими звеньями. Для того, чтобы оценить

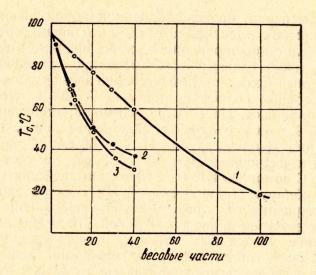


Рис. 2. Зависимость температуры стеклования T_c эпоксидного полимера от содержания пластификаторов и модификаторов 1-ДЭГ-1; 2-МГФ-9; 3-ДБФТ.

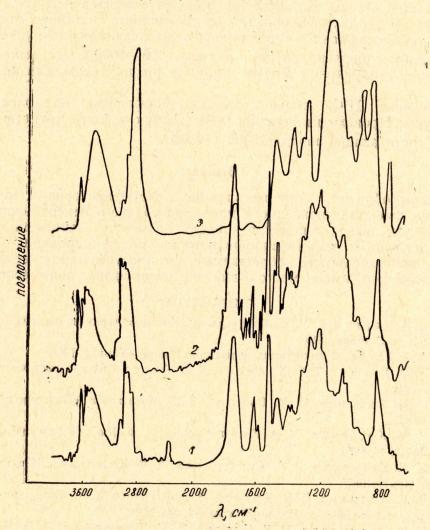


Рис. 3. ИК-спектры поглощения «чистого» эпоксидного полимера [1], модифицированного 40 в. ч. ДЭГ-1 [2] и алифатической эпоксидной смолы ДЭГ-1 [3].

структурные изменения, происходящие при полимеризации эпоксидной смолы в присутствии пластификаторов и модификаторов, были сняты ИК-спектры непластифицированного, пластифицированного эпоксидного полимера, а также спектры пластификаторов и модификаторов. Введение в эпоксидный полимер ДБФТ совершенно не изменило его спектр, так как все основные полосы поглощения ДБФТ и смолы, отвержденной МТГФА, совпадают. На спектре полимера, модифицированного полиэфиром МГФ-9, появляются небольшие новые полосы 1148 и 1087 $c m^{-1}$ за счет колебания эфирных групп, полоса 880 см-1 — за счет колебания группы -C-CH₂ и увеличивается полоса 753 см⁻¹ за счет колебания этиленовых групп. С помощью ИК-спектров взаимодействия ДБФТ и МГФ-9 с ангидридом обнаружить не удалось. На спектре эпоксидного полимера, модифицированного алифатической эпоксидной смолой ДЭГ-1 (рис. 3), не содержится полос поглощения 917 и 866 cm^{-1} , ответственных за колебание эпоксидных групп, и резко увеличилась полоса поглощения 1730 см-1, соответствующая колебанию карбонильных групп, что говорит о взаимодействии алифатической смолы с ангидридом. Кроме того, увеличились интенсивность поглощения полос 1270 и 1316 см⁻¹, ответственных за колебания гидроксильных групп, полос 1052 и 1190 см⁻¹, ответственных за колебание этиленовых групп.

Пластификация оказывает влияние на характер надмолекулярных структур. У непластифицированного эпоксидного полимера просматривается явно выраженная глобулярная надмолекулярная структура. Размеры глобул довольно крупны, порядка 300—1000Å, все вещество находится в глобулярной форме, глобулы расположены близко друг к

другу.

Введение ДБФТ сильно изменяет морфологию надмолекулярной структуры. Происходит агрегирование глобул в более крупные образования, достигающие порядка 5000—10000Å.

Выводы

Таким образом, изучение влияния пластификаторов и модификаторов на свойства эпоксидного полимера горячего отверждения позволяет сделать вывод о наличии корреляции между свойствами и структурой изученных пластифицированных и модифицированных систем, причем закономерности, наблюдаемые при пластификации термопластичных полимеров, имеют место и для термореактивных полимеров [7—9].

ЛИТЕРАТУРА

- 1. В. А. Қаргин, Г. М. Слонимский. Краткие очерки по физико-химии полимеров. Изд-во «Химия», 1967.
 - 2. А. А. Тагер. Физико-химия полимеров. Изд-во «Химия», 1968.
- 3. И. М. Гурман, Т. С. Храмова, М. С. Акутин и др. «Пластические массы», № 5, 24, 1968.
- 4. С. Н. Антонов, И. М. Гурман, В. В. Коврига. «Пластические массы», № 2, 37, 1967.
- 5. Р. М. Кессених, Л. А. Коршунова, А. Ф. Калганов. «Пластические массы», № 10, 46, 1969.
- 6. Р. М. Кессених, Л. А. Коршунова, А. Ф. Калганов. Изв. вузов, «Физика», № 11, 129, 1967.
- 7. Р. М. Асимова, П. В. Козлов, В. А. Каргин, С. М. Вторыгин. Высокомолекулярные соединения. Изд-во «Наука», 4, 554, 1962.
- 8. И. Н. Разинская, П. В. Козлов, Б. П. Штаркман, Л. П. Игнатьева. Высокомолекулярные соединения. 5, 1850, изд-во «Наука», 1963.
 - 9. А. А. Аскадский. Физико-химия полиарилатов. Изд-во «Химия», 1968.