УДК 77.021.11:541.14

ВЛИЯНИЕ РАЗМЕРОВ МИКРОКРИСТАЛЛОВ AgBr (111) НА ПРОЦЕСС ФОРМИРОВАНИЯ СВЕТОЧУВСТВИТЕЛЬНОСТИ В МАТЕРИАЛАХ НА ИХ ОСНОВЕ

Н.С. Звиденцова, И.Л. Швайко, С.А. Созинов, Т.В. Морозова, Н.В. Герасимчук, Л.В. Колесников

Кемеровский государственный университет

E-mail: lvk@kemsu.ru

Обсуждены новые экспериментальные результаты по изменению светочувствительности (S) эмульсий на основе октаэдрических микрокристаллов AgBr (111) в зависимости от среднеэквивалентных размеров (d). Показано, что наблюдаемый максимум в зависимости S=f(d) при d~1 мкм может быть следствием сравнимой с величиной d длины диффузионного смещения фотоэлектрона L, а также с меньшим временем гибели захваченного на ловушке фотоэлектрона в реакции с междоузельным ионом по отношению ко времени его жизни на дефекте до термического возбуждения в зону проводимости.

Введение

В работах авторов [1, 2] обнаружен новый эффект, названный собственным (или спонтанным) созреванием, заключающийся в формировании центров светочувствительности S в процессе созревания октаэдрических микрокристаллов (МК) AgBr (111) без участия серосодержащих добавок. Это впервые прямо доказывает, что образующиеся центры чувствительности имеют серебряную природу, т. е., являются кластерами серебра (Ag_n). Формирование центров чувствительности Ag_n происходит в процессе перекристаллизации, т. е., модифицирования формы и поверхности MK AgBr (111) при строго определенном уровне пересыщения. Степень пересыщения определяется разностью химических потенциалов µ граней (111) и (100). Следует отметить, что значение S при собственном созревании было сравнимо для материалов на основе MK AgBr (111), полученных в обычном режиме химического созревания (с участием серосодержащих добавок).

Общепринято, что процесс образования скрытого изображения в процессе освещения микрокристаллов AgBr есть последовательность электронных и ионных стадий на центрах чувствительности. В высокочувствительных, т. е. в оптимизированных микрокристаллах, эта последовательность сосредотачивается на ограниченном числе центров чувствительности. Степень оптимизации зависит от времени жизни электрона на центре чувствитель-HOCTU $\tau_e \sim \frac{1}{v} \exp\left(\frac{\Delta E_t}{kT}\right)$ $(E_t -$ энергия ловушки относительно зоны проводимости), а также от ионной проводимости σ , которая определяет время нейтрализации захваченного электрона междоузельным ионом $\tau_n = \frac{\varepsilon \varepsilon_0}{\sigma}$. Размытие этих характеристик $\Delta \tau_e$ и $\Delta \tau_n$, вследствие наличия нескольких центров чувствительности, неоднородность МК по размерам и габитусу приводит к понижению чувствительности. Таким образом, важными параметрами образования скрытого изображения являются энергия электронных ловушек (E_t) и ионная проводимость σ . Поскольку значение σ зависит от огранки и разме-

ров МК, в настоящей работе проведено изучение

влияния размеров MK AgBr (111) на светочувствительность, формируемую в процессе собственного созревания. Для обсуждения полученных результатов в работе использованы результаты по измерению ионной проводимости методом диэлектрических потерь, а также литературные данные.

Образцы эмульсий с MK AgBr (111) были получены методом контролируемой двухструйной кристаллизации [3]. Созревание MK без добавления тиосульфата натрия проводились при температуре T=52 °С и pAg=8,5. Светочувствительность S и уровень вуали D_0 определялись с использованием сенситометра ФСР-41 и денситометра ДП-1М. Для измерения ионной проводимости образцы приготавливались в виде дисков после сушки политых фотоэмульсий, по методике [4].

Результаты и обсуждение

На рисунке представлены результаты по изменению светочувствительности и уровня вуали MK AgBr (111) различных размеров. В таблице приведены результаты по изменению величины σ в зависимости от размеров.

Рисунок. Зависимость светочувствительности (S_{0,85}) и уровня вуали (D₀) от среднего эквивалентного размера микрокристаллов AgBr (111): S(0) – исходная чувствительность, S(C) – в режиме собственного созревания, S(C+TAU) – в режиме собственного созревания с добавлением тетраазаиндена (ТАИ)

Таблица. Значение ионной проводимости для ряда размеров МК (111), данные усреднены для единых условий синтеза. С учетом литературных данных приведено значение проводимости б₀ для макрокристалла [5]

<i>d</i> , мкм	<i>σ</i> , Ом ⁻¹ см ⁻¹	<i>Е</i> а, эВ
0,1	1,2·10 ⁻⁵	0,35
0,3	5,4·10 ⁻⁶	0,45
0,4	4,5·10 ⁻⁶	-
0,8	1,1·10 ⁻⁶	0,5
1	1,0·10 ⁻⁶	0,55
макрокристалл	4,2·10 ⁻⁸	-

Как следует из результатов, представленных на рис. 1, наибольшее значение величины *S* в процессе собственного созревания достигается для МК со среднеэквивалентными размерами 0,9...1,1 мкм.

Согласно данным в таблице, значение ионной проводимости при $d\sim 1$ мкм превышает проводимость для макрокристаллов.

Ниже мы рассмотрим возможные причины наблюдаемой зависимости S=f(d). С этой целью, используя литературные данные и результаты, полученные в нашей лаборатории, мы попытаемся установить, является ли наблюдаемый максимум чувствительности следствием влияния таких характеристик фотогенерированных электронов, как длина диффузионного смещения электронов, как длина диффузионного смещения электрона *L*, дрейфовая подвижность μ_d и время жизни фотогенерированных носителей. Учитывая, что время жизни фотоэлектрона τ_e может определяться временем нейтрализации его междоузельным ионом τ_M , будет рассмотрено соотношение между τ_e и $\tau_M = \frac{\varepsilon \varepsilon_0}{\sigma}$.

Для μ_d и τ_e в работе [6–8] получены значения $0,2 \text{ cm}^2 \text{B}^{-1} \text{c}^{-1}$, $0,8 \text{ cm}^2 \text{B}^{-1} \text{c}^{-1}$ и $3 \cdot 10^{-6}$ c, 10^{-7} c, cootbetственно. Используя соотношение Нернста-Эйнштейна $\frac{\mu_e}{D_e} = \frac{e}{kT}$, где μ_e – дрейфовая подвижность электрона, D_e – коэффициент диффузии электрона, *е* – заряд электрона, *k* – постоянная Больцмана, T- температура, можно оценить длину диффузионного смещения электрона *L*. Согласно вышеприведенным данным, величина L находится в пределах 0,6...1,2 мкм. По данным Г.Ф. Новикова [9–13], полученные результаты в работах [6-8] характеризуют электрон, захваченный на ловушках и гибнущий в реакциях с дырками. В то же время, согласно его измерениям, $\tau_e = 3 \cdot 10^{-7}$ с, а μ_d находится в пределах 40...60 см²В⁻¹с⁻¹, что дает для L значение 4 мкм. Таким образом, согласно этим данным, в фотографических системах длина диффузионного смещения электрона сравнима либо превышает размеры микрокристаллов и не может являться лимитирующим фактором в процессе образования скрытого изображения. Иначе говоря, вероятность достижения электроном центра чувствительности в микрокристаллах с размерами <1 мкм равна единице.

Для MK AgBr (111), центры чувствительности, формируемые в процессе собственного созревания, имеют серебряную природу и, поэтому, полученные на рис. 1 зависимости свидетельствуют, что эти центры участвуют в фотопроцессах, подобно центрам – продуктам сернистой сенсибилизации. Светочувствительность в зависимости от среднеэквивалентных размеров МК обсуждалась в [5, 12] для МК AgBr до и после химической сенсибилизации. Показано, что экспериментальные данные можно объяснить, привлекая наиболее надежные данные по подвижности μ фотоносителей, коэффициенту диффузии и ионной проводимости МК. К сожалению, систематических и, поэтому, надежных измерений этих величин и до настоящего времени очень мало. Исключение составляют времена жизни фотоэлектронов, измеренные методом микроволнового поглощения [12] и ионной проводимости [14].

В связи с этим можно предположить, что наблюдаемый максимум светочувствительности для MK AgBr (111) после собственного созревания (рис. 1) связан или с длиной диффузионного смещения фотоэлектрона, или со временем нейтрализации электрона на центре чувствительности междоузельным ионом серебра (т. е., с величиной ионной проводимости). Возможно и совместное влияние перечисленных факторов.

Исходя из высокой чувствительности полученных в работе фотоматериалов, можно предположить, что энергетические уровни ловушек для электрона в наших условиях созревания подобны для продуктов сернистой сенсибилизации и время жизни электрона контролируется не процессом рекомбинации электрона и дырки, а процессом перезахвата электрона междоузельным ионом. Учитывая это, установим связь между временем жизни электрона и параметрами ионной проводимости σ_i . Так, изменение концентрации электронов в рамках принятой модели можно записать, как: $\frac{d(n_c + n_t)}{dt} = -n_t S_i \sigma_i$, где n_c , n_t – концентрация электронов в зоне проводимости и на ловушках захвата, соответственно; S_i – сечение взаимодействия междоузельного иона с захваченным электроном. Величины n_c и n_t связаны между собой соотношени-

ем:
$$n_t = n_c \frac{N_t}{N_c} \exp\left(\frac{E_t}{kT}\right)$$
, где N_t , N_c – концентрация

ловушек захвата и плотность электронных состояний в зоне проводимости, соответственно.

Тогда, учитывая, что $n_c >> n_c$, получим:

$$\frac{dn_c}{dt} = -n_c \frac{N_t}{N_c} S_i \sigma_0 \exp\left(\frac{E_t - E_i}{kT}\right)$$

здесь E_i — энергия ловушки захвата относительно дна зоны проводимости, E_i — энергия активации ионной проводимости.

Таким образом:

$$\tau_e = \frac{N_c}{N_i S_i \sigma_0} \exp\left(-\frac{E_i - E_i}{kT}\right) = C \exp\left(\frac{E_e}{kT}\right),$$

где E_e – энергия, характеризующая глубину залегания ловушки электрона.

В итоге, время жизни электрона на ловушке с энергией E_e есть зависимость аррениусовского типа и в рамках данной модели зависит от N_t , σ_0 . Величина $E_e = -(E_t - E_t)$. Отсюда энергия ловушки может быть оценена по соотношению $E_t = E_t - E_e$.

Таким образом, по измеренным значениям E_i и E_e можно определить глубину электронных ловушек и время жизни электронов.

Здесь следует учесть, что σ_i зависит от размеров микрокристаллов. Эта зависимость есть следствие различия в энергиях образования дефектов Френкеля на поверхности и в объеме. В результате в приповерхностном слое образуется избыток пар Френкеля (вакансии серебра и междоузельные ионы), перераспределение которых по диффузионному механизму приводит к формированию двойного слоя. Вследствие разной подвижности междоузельных ионов $\mu(Ag_{i}^{+})$ и катионных вакансий $\mu(V_{k}^{-}), \mu(Ag_{i}^{+}) > \mu(V_{k}^{-}),$ приповерхностная область обогащается междоузельными ионами, а поверхность заряжается отрицательно. В равновесии дрейфовый поток дефектов в приповерхностном поле уравновешивает диффузионный поток. В рамках этой модели находит объяснение зависимость σ_i MK AgBr от огранки, размеров и адсорбции поверхностно активных веществ. Количественные оценки характеристик двойного слоя были сделаны еще в работах Тан и Кливера [15–17], в которых из решения уравнения Пуассона

$$\nabla^2 \varphi(r) = -\frac{\rho(r)}{\varepsilon} = -\frac{e}{\varepsilon} (n_i(r) - n_v(r)) =$$
$$= \frac{2en_0}{\varepsilon} \sinh\left(\frac{e\varphi(r)}{kT}\right)$$

с граничными условиями:

$$\left(\frac{d\varphi(r)}{dr}\right)_{r=0} = 0; \, e\varphi_s(r_0) = \frac{1}{2}(\Delta\sigma_i - \Delta\sigma_v - kT\ln r)$$

получены для поверхностного потенциала следующие выражения:

$$\varphi(r) = \varphi_s \exp(-\frac{r}{\lambda});$$
$$\varphi(r) = \frac{4kT}{e} \tanh\left\{\exp(-\frac{r}{\lambda}) \tanh\left(\frac{e\varphi_s}{4kT}\right)\right\}$$

где

$$n_i = n_0 \exp\left(-\frac{e\varphi(r)}{kT}\right); n_v = n_0 \exp\left(\frac{e\varphi(r)}{kT}\right); \lambda = \sqrt{\frac{\varepsilon\varepsilon_0 kT}{e^2 n}}$$

– длина Дебая.

Используя рассмотренные подходы, в работе [14] было показано, что $\lambda \approx 800...1000$ Å, значение φ_s для MK AgBr (100) равно 0,15 эB, для MK AgBr (111) равно 0,22 эB. Более точный анализ характеристик двойного слоя затруднен вследствие возможного неравенства нулю потенциала в объеме MK.

Согласно данным работы [8], значение E_e практически не зависело от размеров МК и равнялось 0,07 эВ. Отсюда следует неожиданный результат энергия ловушки в оптимуме созревания зависит от размеров МК AgBr (111), и в образцах с размерами d=0,9...1 мкм $E_t=0,45...0,5$ эВ. Таким образом, если принять, что в процессе собственного созревания эффективная глубина ловушек в MK AgBr (111) с d=1 мкм составляет 0,45...0,5 эВ, то по соот-

ношениям
$$au_{M} = \frac{\varepsilon \varepsilon_{0}}{\sigma}$$
 и $\tau_{e} = \frac{1}{v_{0}} \exp\left(-\frac{E_{t}}{kT}\right)$ можно

оценить, с одной стороны, максвелловское время релаксации и время жизни электрона на ловушках. Соответствующие значения получились равными: $\mu_{m}=1,1\cdot10^{-6}$ с и $\tau_{e}=6,3\cdot10^{-6}$ с. Таким образом, соотношение этих величин свидетельствует о том, что нейтрализация захваченного носителя произойдет раньше, чем произойдет термическое опустошение ловушки. Для монокристалла соответствующее значение $\tau_{n}\sim 2,6\cdot10^{-5}$ с сравнимо с τ_{e} . В этом случае возрастает вероятность нарушения принципа сосредоточения в процессе образования скрытого изображения и светочувствительность уменьшается, что и наблюдается в эксперименте (рис. 1).

С другой стороны, если принять для времени жизни свободного электрона в зоне проводимости значение $3 \cdot 10^{-7}$ с, а для коэффициента диффузии электрона $D_e=0,02$ см²с⁻¹, то длина диффузионного смещения электрона будет равна ≈ 0.8 мкм, что близко к экспериментальному значению *d* в максимуме светочувствительности (*d*=0,9...1,1 мкм).

В то же время здесь необходимо отметить, что все результаты по величинам τ_e , μ_d , D_e , полученные на напыленных и плавленных слоях, а также на порошках, относятся к системам пересыщенных на поверхности по серебру. Подобное состояние поверхности соответствует микрокристаллам AgBr после нахождения в растворе со значением pAg \approx 3 и не характерно для фотографических систем. Поэтому более реалистичен подход с использованием данных, полученных на эмульсионных микрокристаллах галогенидов серебра, что и сделано в настоящей работе.

Заключение

Таким образом, анализ экспериментальных данных по измерению σ и $S=f(d_{MK})$ на реальных эмульсионных микрокристаллах позволяет сделать следующие выводы. В оптимизированных эмульсиях на основе MK AgBr (111) в процессе собственного созревания формируются серебряные центры чувствительности, которые в процессе освещения трансформируются в центры скрытого изображения. Светочувствительность фотографических систем на основе AgBr (111) увеличивается с увеличением размеров МК до $d \sim 1$ мкм, а затем уменьшается. Наличие максимума в зависимости S(d) по всей вероятности может быть следствием различия максвелловского времени релаксации и времени ожидания междоузельного иона электроном на дефекте $\tau_e > \tau_{M}$. Оценка длины диффузионного смещения электрона в MK AgBr (111) дает значение 0,8 мкм, что близко к наблюдаемому. Поэтому причинами появления максимума в зависимости S(d) наиболее вероятно являются оба рассмотренных фактора.

СПИСОК ЛИТЕРАТУРЫ

- Колесникова И.Л., Созинов С.А., Шапошникова Е.В., Звиденцова Н.С., Колесников Л.В. Особенности созревания эмульсий с микрокристаллами октаэдрического габитуса // Журн. науч. и прикладной фото- кинематографии. – 2000. – Т. 45. – № 3. – С. 17–22.
- Колесникова И.Л., Созинов С.А., Юдин А.Л., Звиденцова Н.С., Сергеева И.А., Колесников Л.В. Влияние условий синтеза и созревания на свойства и фотографические характеристики микрокристаллов AgBr // Журн. науч. и прикладной фото- кинематографии. – 2002. – Т. 47. – № 4. – С. 11–17.
- Джеймс Т.Х. Теория фотографического процесса. Л.: Химия, 1980. – 673 с.
- Сергеева И.А., Шапошникова Е.В., Бондаренко П.С., Колесников Л.В. Влияние условий синтеза на проводимость микрокристаллов галогенидов серебра // Журн. науч. и прикладной фото- кинематографии. – 2000. – Т. 45. – № 3. – С. 23–30.
- Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения. – М.: Наука, 1972. – 400 с.
- Hamilton J., Brady L.F. The role of mobile ions in latent-image formation // J. Phys. Chem. – 1962. – V. 66. – P. 2384–2396.
- Derri R.J., Spoonhower J.P. Drift mobility, electron trapping and diffusion limited kinetics in sulfer-sensitized AgBr microcrystals // J. Appl. Phys. – 1985. – V. 57. – № 8. – P. 2806–2811.
- Kaneda T. A new approach to estimation of depth of electron traps in AgBr emulsion grains of the basis of Gurney-Mott model // J. Imag. Sci. – 1989. – V. 33. – № 4. – P. 115.
- Грабчак С.Ю., Новиков Г.Ф. Быстрозатухающий фотоэлектрический эффект в бромиде серебра // Журн. науч. и прикладной

фотографии и кинематографии. – 1988. – Т. 33. – № 5. – С. 371–373.

- Новиков Г.Ф., Грабчак С.Ю., Алфимов М.В. Вклад свободного электрона в СВЧ-поглощение, индуцированное импульсом света в плавленом бромиде серебра. 300 К // Журн. науч. и прикладной фотографии и кинематографии. – 1990. – Т. 35. – № 1. – С. 18–26.
- Грабчак С.Ю., Новиков Г.Ф., Моисеева Л.С., Любовский М.Р., Алфимов М.В. Алфимов М.В. Фотодиэлектрический эффект и фотопроводимость в порошкообразном бромиде серебра. 300 К // Журн. науч. и прикладной фотографии и кинематографии. – 1990. – Т. 35. – № 2. – С. 134–140.
- Новиков Г.Ф., Рабенок Е.В., Алфимов М.В. Исследования элементарных стадий фотолиза галогенидов серебра методом микроволновой фотопроводимости // Химия высоких энергий. 2005. Т. 39. № 3. С. 204–212.
- Новиков Г.Ф. Электрон-ионные процессы в микрополидисперсионных галогенидах серебра. Противоречивость литературных данных // Журн. науч. и прикладной фото- кинематографии. – 1997. – Т. 42. – № 6. – С. 3–13.
- Колесников Л.В. Свойства микрокристаллов галогенидов серебра и контактных систем на их основе: Автореф. дис. ... докт. физ.-мат. наук. – Кемерово, 1997. – 46 с.
- Kliver K.L. Space charge in ionic crystals. I. Silver halides containing divalent cations // J. Phys. Chem. Solids. – 1966. – V. 27. – P. 705–717.
- Kliver K.L. Space charge in ionic crystals. II. The electron affinity and impurity accumulation // Phys. Rev. – 1965. – V. 140. – № 4A. – P. 1241–1246.
- Tan Y.T. Ionic defects in silver halides, surface and bulk // J. Soc. Photogr. Sci. Technol. Japan. – 1991. – V. 54. – № 4. – P. 457–463.

УДК 537.9

ЭНЕРГИЯ И ОБЪЕМ РАСТВОРЕНИЯ ВОДОРОДА В ГЦК РЕШЕТКЕ АЛЮМИНИЯ

А.Г. Липницкий, О.В. Лопатина, И.П. Чернов

Томский политехнический университет E-mail: loks@fnsm.tpu.edu.ru

Произведены первопринципные расчеты характеристик взаимодействия водорода с алюминием. Исследовано влияние перестройки атомной структуры на величину энергии и объема растворения водорода в металле. В рамках модели химической связи в металлах изучено влияние водорода на изменение электронной плотности в алюминии и проанализирован механизм возникновения избыточного объема, вносимого водородом в металл.

1. Введение

В связи с важностью описания механизмов изменения и прогнозирования свойств материалов в условиях взаимодействия с водородом [1–3] направлены усилия многих исследователей на изучение характеристик взаимодействия водорода с металлами.

Энергия растворения водорода является одной из основных характеристик такого взаимодействия, определяющая концентрацию примеси водорода при заданных внешних условиях и тем самым влияющая на все физические и механические свойства системы металл-водород. Избыточный объем, вносимый водородом в материал, представляет другую величину, с которой связаны многие практические важные явления. Избыточный объем приводит к дальнодействующим взаимодействиям между атомами водорода и направленной миграции водорода в поле упругих напряжений в разбавленных металл-водородных системах. Эти взаимодействия ответственны за скопление водорода в областях с растягивающими напряжениями и выделение гидридов в полях напряжений вблизи вершин трещин, снятию дальнодействующих полей дислокаций и увеличения их подвижности. Рассмотрение отмеченных и других явлений, связанных с энергией и объемом растворения водорода в материалах можно найти в книге [1] и обзорной ра-