УДК 771.534.21:547.832.1

ИЗУЧЕНИЕ СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫХ СВОЙСТВ γ -ПИРИЛОЦИАНИНОВ И ИХ ГЕТЕРОАНАЛОГОВ

Н.С. Коботаева, Е.В. Микубаева, Т.С. Скороходова, Е.Е.Сироткина

Институт химии нефти СО РАН, г. Томск E-mail: see@ipc.tsc.ru

Изучены спектрально-люминесцентные свойства γ -пирилоцианинов и их гетероаналогов с модифицированными комплексными анионами. Показано, что происходит уменьшение квантовых выходов флуоресценции в ряду пирило-, тиапирило-, селенпирило- для моно- и триметинцианинов и при замене в молекуле красителя аниона ClO_4^- на анион $TlCl_4^-$ в результате увеличения вероятности синглет-триплетных переходов под влиянием тяжелых атомов.

Полиметиновые красители (ПК) являются уникальными преобразователями световой энергии в видимой и ИК-области спектра [1] и широко используются в качестве фотосенсибилизаторов [2, 3], активных лазерных сред [4, 5], фоторезистов и новых средств для записи информации. Для эффективного поиска ПК, способных целенаправленно преобразовывать световую энергию существует необходимость в установлении закономерности между химическим строением красителей и их спектрально-люминесцентными свойствами. Требуется комплексный подход к изучению спектрально-люминесцентных свойств - изучение электронных спектров поглощения (ЭСП), спектров люминесценции, квантовых выходов люминесценции, времени жизни возбужденного состояния и многих других характеристик.

Целью данной работы является изучение спектрально-люминесцентных свойств одного из классов $\Pi K - \gamma$ -пирилоцианинов и их гетероаналогов: зависимость $\Im C\Pi$, спектров флуоресценции и квантовых выходов флуоресценции от структуры аниона и катиона красителя.

Методика эксперимента

Объектами исследования служили пирилиевые, тиапирилиевые, селенпирилиевые красители общей формулы R^+Y^- , где R^+ — катион красителя формулы (1), а Y^- — анион ClO_4^- или комплексный анион, содержащий металл — $TlCl_4^-$. Характеристики исследованных красителей приведены в табл. 1.

Ph
$$X + (CH - CH)_n - CH - X$$

$$X + (CH - CH)_n - CH - X$$

$$X + (CH - CH)_n - CH - X$$

$$X + (CH - CH)_n - CH - X$$

$$X + (CH - CH)_n - CH - X$$

$$X + (CH - CH)_n - CH - X$$

$$Y + (CH - CH)_n - CH - X$$

$$Y + (CH - CH)_n - CH - X$$

$$Y + (CH - CH)_n - CH - X$$

$$Y + (CH - CH)_n - CH - X$$

$$Y + (CH - CH)_n - CH - X$$

$$Y + (CH - CH)_n - CH - X$$

$$Y + (CH - CH)_n - CH - X$$

$$Y + (CH - CH)_n - CH$$

$$Y + (CH)_n - CH$$

$$Y + (CH)_n$$

Перхлораты γ -пирилоцианинов и их гетероаналогов были синтезированы в Институте органической химии Национальной Академии наук Украины по методикам, опубликованным в [6–8]. Комплексный анион $TICl_4$ был получен по методике [9]. Перед использованием красители очищали от

побочных продуктов по методикам, опубликованным в [6-8].

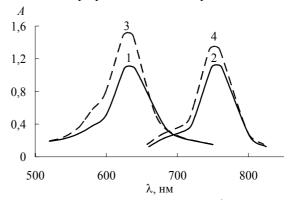
Таблица 1. Характеристики γ-пирилоцианинов и их гетероаналогов

Краси- тель	Х	n	Анион	λ _{max} , нм (хлф.)	Краси- тель	Х	n	Анион	λ _{max} , нм (хлф.)
K1	0	0	ClO ₄ -	555	K4	0	1	ClO ₄ -	689
K1'	0	0	TICl ₄ -	552	K4'	0	1	TICl ₄ -	686
K2	S	0	ClO ₄ -	632	K5	S	1	ClO ₄ -	763
K2'	S	0	TICl ₄ -	630	K5′	S	1	TICl ₄ -	760
K3	Se	0	ClO ₄ -	675	K6	Se	1	ClO ₄ -	805
K3'	Se	0	TICl ₄	672	K6′	Se	1	TICl ₄	800

Поли-N-эпоксипропилкарбазол (ПЭПК), полученный реакцией полимеризации N-эпоксипропилкарбазола в щелочной среде [10], очищали переосаждением из толуола в гексан и высушивали в вакууме (2·10⁴ Па) при температуре 50 °C, отсутствие в продукте исходного мономера контролировали хроматографически (TCX, Silufol, хлороформ).

Электронные спектры поглощения пирилиевых красителей в хлороформе (х.ч.) в кварцевой кювете (*s*=9,99 мм) записывали с помощью спектрофотометра «Specord M40», спектры флуоресценции в хлороформе (х.ч.) в кварцевой кювете (*s*=9,99 мм) регистрировали на спектрофлуориметре «Hitachi-850». При расчете квантовых выходов флуоресценции для всех красителей использовали одинаковые интенсивности возбуждающего света. Корректировку интенсивностей проводили по спектру диффузного отражения ксеноновой лампы.

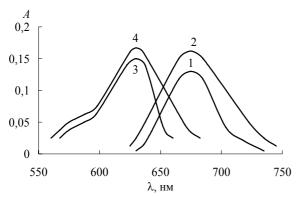
Сенсибилизирующую активность тройных комплексов и перхлоратов пирилиевых красителей оценивали по величине фоточувствительности (ФЧ) $S_{0,2}$ образцов однослойного электрофотографического материала (далее по тексту образцов), представляющих собой слой фоточувствительной композиции, нанесенной на алюминиевую подложку методом «купающегося ролика» из раствора в хлороформе. Состав фоточувствительных композиций (мас. %): ПЭПК — 98,5; краситель — 1,5. Полученные образцы высушивали при температуре 60 °С и атмосферном давлении в течение суток. Фоточувствительность определяли методом фотозатухания потенциала [11] при температуре 20...25 °С и относительной влажности воздуха

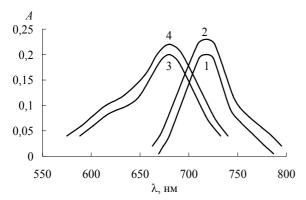

45...75 % с помощью лабораторного сенситометра, позволяющего испытывать образцы в электрофотографическом режиме при положительной и отрицательной зарядке поверхности.

Все используемые в работе растворители (толуол, хлороформ, гексан) подвергали дополнительной очистке по методикам, опубликованным в [12].

Результаты и обсуждение

По совокупности определенных физико-химических свойств [13], к которым, прежде всего, относятся их оптические свойства, γ -пирилоцианины и их гетероаналоги можно рассматривать как потенциальные эффективные спектральные сенсибилизаторы органических полупроводников (ОП). Однако их незначительная растворимость в малополярных органических средах, в которых хорошо растворяются ОП, ограничивает их использование в качестве спектральных сенсибилизаторов. В литературе описаны способы увеличения растворимости пирилиевых красителей: введением в молекулу (катион) красителя объемных, например, трет-бутильных заместителей [14] или заменой аниона ClO_4^- на комплексный анион, содержащий металл и органический или неорганический лиганд, например, $TlCl_4^-$ [15]. Катионные красители с такими модифицированными комплексными анионами называются тройными комплексами или ионными ассоциатами. Пирилиевые красители и их гетероаналоги с модифицированными комплексными анионами обладают не только достаточно хорошей растворимостью в малополярных органических средах, но и более высокой эффективностью сенсибилизации органических полупроводников по сравнению с перхлоратами тех же красителей [15]. Можно предположить, что в результате модификации аниона изменяются и другие физико-химические характеристики красителей, например, их спектрально-люминесцентные свойства.


Как известно [1], спектрально-люминесцентные свойства полиметиновых красителей определяются главным образом их длинноволновым π - π^* переходом $(S_0 \rightarrow S_1)$, дипольный момент которого направлен вдоль цепи сопряжения от одного гетероостатка к другому (вдоль длинной оси хромофора). На рис. 1 изображены ЭСП тиапириломонометин- и тиапирилотриметинцианина с анионом $ClO_4^-(K2, K5)$ и анионом $TlCl_4^-(K2', K5')$ в растворе хлороформа. ЭСП перхлоратов тиапирилиевых красителей (рис. 1, кривые 1 и 2) представлены интенсивной, достаточно узкой длинноволновой полосой с перегибом (монометинцианин) или максимумом (триметинцианин) на коротковолновом краю ветви. Коротковолновой максимум в ЭСП перхлоратов пирилиевых красителей является проявлением колебательной структуры молекулы [16]. Подобного вида длинноволновые полосы поглошения являются типичными для всех ПК и различаются лишь по интенсивности. Максимумы длинноволновой полосы поглощения тиапириломонои тиапирилотриметинцианина с модифицированным анионом TlCl₄⁻ (рис. 1, кривые 3 и 4) сдвинуты гипсохромно на 3 нм относительно максимума полосы поглощения перхлоратов тех же красителей. Гипсохромный сдвиг максимумов обусловлен, вероятно, изменением электроноакцепторных свойств молекулы пирилиевого красителя при изменении анионной составляющей его структуры, как было показано ранее в [17] на примере тройных комплексов трифенилметановых красителей.


Рис. 1. Электронные спектры поглощения: 1) краситель K2; 2) краситель K5; 3) краситель K2'; 4) краситель K5

ЭСП пирилиевых красителей с модифицированными комплексными анионами, как и перхлоратов, представлены достаточно узкой длинноволновой полосой с перегибом или максимумом на коротковолновом краю ветви. Является ли коротковолновой максимум в ЭСП тройных комплексов проявлением колебательной структуры молекулы, как в случае перхлоратов, или комплексный анион изменяет природу побочного максимума?

Для объяснения природы побочного максимума (колебательная структура, второй электронный переход, образование ассоциатов) для моно- и триметинцианинов с анионом TlCl₄ были сняты спектры флуоресценции и спектры возбуждения флуоресценции. На рис. 2 и 3 представлены спектры флуоресценции, возбуждения флуоресценции и ЭСП тиапириломонометинцианина и пирилотриметинцианина с анионом TlCl₄-. Сравнительный анализ спектров показал, что форма полос флуоресценции не зависит от длины волны возбуждающего света. При возбуждении длиной волны и длинноволнового, и коротковолнового максимума получаем одни и те же спектры флуоресценции, различающиеся лишь по интенсивности (рис. 2 и 3, кривые 1 и 2). Спектры возбуждения флуоресценции исследованных комплексов практически совпадают с их спектрами поглощения. Все это позволяет отнести наблюдаемые электронные переходы к электронным переходам в одной молекуле, а коротковолновой максимум длинноволновой полосы поглощения охарактеризовать как проявление колебательной структуры основного электронного перехода.

Рис. 2. Спектры красителя K2': 1) флуоресценции $(\lambda_{\text{max}} = 675 \text{ нм, } \lambda_{\text{8036}} = 600 \text{ нм}); 2)$ флуоресценции $(\lambda_{\text{max}} = 675 \text{ нм, } \lambda_{\text{8036}} = 630 \text{ нм}); 3)$ возбуждения флуоресценции $(\lambda_{\text{max}} = 630 \text{ нм}); 4)$ поглощения $(\lambda_{\text{max}} = 630 \text{ нм})$

Рис. 3. Спектры красителя K4': 1) флуоресценции $(\lambda_{\max}=718 \text{ нм}, \lambda_{\text{воз}6}=615 \text{ нм}); 2)$ флуоресценции $(\lambda_{\max}=718 \text{ нм}, \lambda_{\text{воз}6}=680 \text{ нм}); 3)$ возбуждения флуоресценции $(\lambda_{\max}=680 \text{ нм}); 4)$ поглощения $(\lambda_{\max}=680 \text{ нм})$

Изучение флуоресцентных свойств пирилиевых красителей показало, что интенсивность флуоресценции весьма существенно зависит от структуры красителя — гетероатома в гетероцикле катиона красителя и комплексного аниона. Поэтому представляло интерес определение квантовых выходов флуоресценции — $\phi_{\text{фл}}$.

Таблица 2. Квантовые выходы флуоресценции (ϕ_{ϕ_n}) пирилиевых красителей и значения фоточувствительности ($S_{0,2}$) сенсибилизированного красителями ПЭПК, измеренной в максимуме полосы поглощения красителя при положительной зарядке поверхности

Краситель	Анион	$\lambda_{ m max}$, нм (хлф.)	φφυ, %	S _{0,2} , м²/Дж	Краситель	Анион	$\lambda_{ m max}$, нм $({ m xл} { m ф.})$	% '"Φφ	S _{0,2} , м²/Дж
K1	ClO ₄	500	0,240	15,0	K4	ClO ₄	650	0,870	3,5
K1'	TICl ₄	500	0,145	35,0	K4'	TICl ₄	650	0,800	6,2
K2	ClO ₄	600	0,107	45,0	K5	ClO ₄ -	730	0,860	5,9
K2'	TICl ₄	600	0,044	87,0	K5'	TICl ₄	730	0,795	12,1
К3	ClO ₄	650	0,056	52,0	K6	ClO ₄	770	0,770	7,3
K3′	TICl ₄	650	0,041	97,0	K6′	TICl ₄	770	0,700	15,5

Квантовые выходы флуоресценции определяли по методике, описанной в [18, 19]. В качестве эталонов использовали люминофоры с известными значениями квантовых выходов флуоресценции в

той же области, что и исследуемые соединения — эозин и метиленовый голубой [19, 20]. Полученные значения квантовых выходов флуоресценции представлены в табл. 2.

Судя по данным табл. 2, квантовый выход флуоресценции уменьшается в ряду пирило-, тиапирило-, селенпирило- и для моно-, и для триметинцианинов (0,240; 0,107; 0,056 и 0,870; 0,860;0,770 соответственно). Изменение величины квантового выхода в этом случае может быть вызвано увеличением вероятности синглет-триплетных переходов иза присутствия в молекуле красителя тяжелых атомов (О, S, Se). Подобное явление было замечено ранее [21] на ряде тиакарбоцианиновых красителей при введении в положение 9 полиметиновой цепи атомов F, Cl, Br, I. Увеличение спин-орбитального взаимодействия при переходе от 9-фтор к 9-йод замещенному красителю приводит к увеличению выхода интеркомбинационной конверсии.

Кроме того, квантовый выход флуоресценции уменьшается и для моно-, и для триметинцианинов при замене в их молекулах аниона ${\rm ClO_4}^-$ на комплексный анион, содержащий металл (${\rm TlCl_4}^-$). Изменение квантовых выходов и в этом случае может быть связано с увеличением вероятности синглет-триплетных переходов в результате внешнего эффекта тяжелого атома, связанного с наличием в комплексном анионе металла.

Учитывая, что пирилиевые красители — красители катионные, в которых хромофор несет положительный, а анион — отрицательный заряд, взаимодействие между ними электростатическое и тяжелый атом комплексного аниона находится вне хромофора, можно предположить, что эффективность возмущающего действия тяжелого атома на систему электронных уровней хромофора зависит от расстояния между анионом и катионом.

Известно [4, 22, 23], что флуоресценция тушится некоторыми анионами, а эффективность тушения зависит от химической природы аниона и изменяется в ряду $I > CNS > Br > Cl > ClO_4$. Кроме того, на квантовый выход флуоресценции катионных красителей влияет концентрация раствора и полярность растворителя [24]. Так, например, выходы флуоресценции растворов иодида и перхлората родамина 6G в этиловом спирте при концентрации 10-4 моль/л одинаковы и очень высоки. Это показывает, что в данном случае тушение анионами не происходит. В малополярном же растворителе (хлороформе) флуоресценция иодида родамина 6G при той же концентрации почти полностью потушена, тогда как перхлорат родамина 6G флуоресцирует так же ярко, как в этаноле. Очевидно, соли красителя в полярном растворителе почти полностью диссоциированы, и ионы находятся на значительном расстоянии друг от друга, а в неполярном растворителе – не диссоциированы. Вследствие этого в полярном растворителе тушащие анионы не успевают встретить возбужденную молекулу красителя за время жизни возбужденного состояния.

В нашем случае определение квантовых выходов флуоресценции проводили в малополярном хлороформе, однако использовали сильно разбавленные растворы — 10⁻⁵ моль/л. Но даже при таких концентрациях просматривается влияние тяжелого атома аниона на квантовый выход флуоресценции. Поэтому было интересно выяснить, как меняется квантовый выход флуоресценции при увеличении концентрации красителя или тройного комплекса в растворе.

В табл. 3 приведены данные по зависимости эффективности флуоресценции катионного пирилиевого красителя от его концентрации на примере красителей селенпириломоно- и селенпирилотриметинцианина с анионами ClO_4^- и TlCl_4^- .

Анализ полученных данных показывает, что для красителей с анионом ClO_4^- при увеличении концентрации квантовый выход флуоресценции уменьшается незначительно. Для красителей с анионом $TlCl_4^-$ наблюдается уменьшение квантового выхода флуоресценции — в семь раз для монометинцианина (К3) и в 4,5 раза для триметинцианина (К6). Таким образом, процесс тушения флуоресценции связан именно с присутствием в молекулах красителей комплексных анионов, содержащих металл.

Таблица 3. Зависимость квантового выхода флуоресценции (ϕ_{ϕ_n}) пирилиевых красителей от их концентрации (c_{ς_p})

Краси-	Анион	$arphi_{ m \phi_{ m J}}$, % при $archi_{ m kp}$, моль/л						
тель	Allvioli	0,6⋅10⁻⁵	1,0·10 ⁻⁵	1,6⋅10⁻⁵	2,0.10-5			
К3	ClO ₄ -	0,056	0,055	0,041	0,040			
K3'	TICl ₄ -	0,041	0,035	0,0059	-			
K6	ClO ₄ -	0,770	0,750	0,717	0,700			
K6'	TICI ₄ -	0,700	0,650	0,180	0,148			

 γ -Пирилоцианины и их гетероаналоги являются эффективными спектральными сенсибилизаторами органических полупроводников [15]. Сенси-

СПИСОК ЛИТЕРАТУРЫ

- 1. Ищенко А.А. Строение и спектрально-люминесцентные свойства полиметиновых красителей. Киев: Наукова думка, 1994. 207 с.
- 2. Джеймс Т. Теория фотографического процесса. Л: Химия, 1980. 672 с
- 3. Шапиро Б.И. Исторический очерк по спектральной сенсибилизации фотографических материалов (к 150-летию открытия фотографии) // Журн. науч. и прикл. фото- и кинематографии. 1989. Т. 34. № 4. С. 254-266.
- Лазеры на красителях / Под ред. Ф.П. Шефера. М.: Мир, 1976. – 339 с.
- 5. Малышев В.И. Применение полиметиновых красителей в квантовой электронике // Успехи научной фотографии. 1984. Т. 22. С. 177—192.
- Толмачев А.И., Кудинова М.А. Тиапирилоцианины. І. Тиафлавилоцианины // Химия гетероциклических соединений. 1969. № 5. С. 804–808.
- Киприанов А.И., Толмачев А.И. Конденсация третичных оксониевых солей хромонов и тиахромонов с веществами, содержащими активные метильные и метиленовые группы // Журнал общей химии. 1960. Т. 30. № 2. С. 638—646.

билизирующая активность красителей, как показано в работе [17], увеличивается в ряду пирило-, тиапирило-, селенпирило- для моно- и триметинцианинов при однотипных анионах и при замене в молекуле красителя аниона ${\rm ClO_4}^-$ на комплексный анион, содержащий металл (табл. 3). В той же последовательности меняется и величина квантового выхода флуоресценции. Следовательно, для данного ряда красителей наблюдаются корреляции между величиной квантового выхода флуоресценции и их сенсибилизирующей активностью.

Таким образом, исследование спектрально-люминесцентных свойств γ -пирилоцианинов и их гетероаналогов с модифицированными комплексными анионами показало, что

- в ЭСП наблюдается гипсохромный сдвиг на 3 нм максимума длинноволновой полосы поглощения пирилиевого красителя при замене аниона ClO₄⁻ на комплексный анион, содержащий металл;
- перегиб (монометинцианин) или максимум (триметинцианин) на коротковолновом краю ветви длинноволновой полосы поглощения на основании исследования спектров люминесценции и спектров возбуждения люминесценции был отнесен к колебательной структуре основного электронного перехода;
- квантовый выход флуоресценции пирилиевых красителей уменьшается в ряду пирило-, тиапирило-, селенпирило- для моно- и триметинцианинов и при замене в молекуле красителя аниона ClO₄⁻ на комплексный анион TlCl₄⁻. Можно предположить, что уменьшение квантового выходя флуоресценции происходит в результате увеличения вероятности синглет-триплетных переходов под влиянием тяжелого атома катиона или комплексного аниона красителя.
- Толмачев А.И., Кудинова М.А. Пирилоцианины. IV. Симметричные 2,6-дифенилтиа- и 2,6-дифенилселенпирилоцианины // Химия гетероциклических соединений. 1974. № 1. С. 49–52.
- Золотов Ю.А., Иофа Б.З., Чучалин Л.К. Экстракция галогенидных комплексов металлов. – М.: Наука, 1973. – 376 с.
- А.с. 503200 СССР. МКИ G03G 5/06. Электрофотографический материал / А.И. Ундзенас, В.И. Гайдялис, И.Б. Сидаравичюс, Р.И. Каволюнас, И.И. Зданавичус, Н.К. Дуобинис. Заявлено 08.02.1972; Опубл. 1976, Бюл. № 6. 110 с.
- 11. Шафферт Р. Электрофотография. М.: Мир, 1968. 448 с.
- 12. Гордон А., Форд Р. Спутник химика. М.: Мир. 1976. 542 с.
- 13. Sato H. Organic Photoconductive Materials // J. Soc. Fiber. Sci. and Tecnol. Jap. 1987. V. 43. No. 4. P. 83-95.
- Patent 3011279 BRD. MKИ C07D 335/02. 2,6-Di-tetr-butyl-4-methyl-thiopyryliumsalze and Verfahren zu ihrer Herstellung / K. Kawamura, H. Katsuyama, H. Sato. Offenlegungstag 24.03.80; Veroffentlichungstag der Patenterteilung 24.04.89.
- Коботаева Н.С., Сироткина Е.Е., Анисимова Л.С., Кудинова М.А., Толмачев А.И. Исследование сенсибилизирующей способности пирилиевых красителей // Полимерные органиче-

- ские полупроводники и регистрирующие среды на их основе: Тезисы докл. І Всес. конф. Киев, 1989. С. 67.
- Пермагоров В.И., Дядюша Г.Г., Михайленко Ф.А., Киприянов А.И. Электронные спектры бисцианинов // Доклады АН СССР. – 1969. – Т. 188. – № 5. – С. 1098–1101.
- Коботаева Н.С., Сироткина Е.Е., Микубаева Е.В. Спектральная сенсибилизация фотопроводимости поли-N-эпоксипропилкарбазола и дифенилгидразонов бензальдегида тройными комплексами трифенилметановых красителей // Химия высоких энергий. 2005. Т. 39. № 5. С. 362–366.
- Левшин Л.В., Салецкий А.М. Люминесценция и ее измерение.
 М.: МГУ, 1989. 280 с.
- Паркер С.А. Фотолюминесценция растворов. М.: Мир, 1972.
 247 с.

- Теренин А.Н. Фотоника молекул красителей. Л.: Наука, 1967.
 527 с.
- Кузьмин В.А., Дарманян А.П., Широкова Н.И. Конфигурации фотоизомеров мероцианиновых красителей // Известия АН СССР. Серия химическая. – 1976. – № 8. – С. 1864–1866.
- 22. Pringsheim P. Fluorescence and Phosphorescence. N.Y.: Interscience, 1949. 322 p.
- Forster Th. Fluoreszenz organischer Verbindungen. Gottingen: Vandenhoeck u. Ruprecht, 1951. – 181 p.
- 24. Drexhage K.H. Laser Dye Composition // Laser Focus. 1973. V. 9. No 3. P. 35–40.

УДК 547.632.5:543.422.25

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ВЗАИМОДЕЙСТВИЯ ПОЛИ-N-ЭПОКСИПРОПИЛКАРБАЗОЛА С ТРИФЕНИЛМЕТАНОВЫМИ КРАСИТЕЛЯМИ

Н.С. Коботаева, В.Д. Огородников, Е.В. Микубаева, Е.Е. Сироткина

Институт химии нефти СО РАН, г. Томск E-mail: see@ipc.tsc.ru

Методом ЯМР-спектроскопии исследованы взаимодействия между трифенилметановым красителем или тройным комплексом трифенилметанового красителя и поли-N-эпоксипропилкарбазолом. Показано, что полимерный органический полупроводник и краситель взаимодействуют в основном состоянии, образуя слабые комплексы с переносом заряда.

В настоящее время поли-N-эпоксипропилкарбазол (ПЭПК) является одним из наиболее удобных объектов для изучения механизма спектральной сенсибилизации фотопроводимости органических полупроводников красителями [1]. При поглощении света в сенсибилизированном полупроводнике генерируются свободные носители заряда, нейтрализующие начальный потенциал зарядки [2]. Основную роль в процессе фотогенерации носителей заряда в сенсибилизированном полимере играют возбужденные молекулы сенсибилизатора A^* , образующиеся при поглощении кванта света. Одним из важных каналов превращения состояния A^* является безызлучательный диполь-дипольный перенос энергии, в том числе и к центрам генерации носителей заряда [3]. Центрами генерации могут быть комплексы с переносом заряда (КПЗ) [4-6], которые образуются между сенсибилизатором и полупроводником в основном состоянии, или эксиплексы - комплексы возбужденной молекулы сенсибилизатора с молекулой полимера в основном состоянии [7]. Образование КПЗ в основном состоянии зафиксировано в системах поливинилкарбазол – родамин В, полиметиновый краситель методом электронной и Штаркспектроскопии [4, 5] и в системах поли-N-эпоксипропилкарбазол – прилиевые соли методом микрокалориметрии [6]. Люминесцентными методами обнаружены эксиплексы в системах ПЭПК – родамин 6G и поливинилкарбазол – родамин 6G [7].

В работе [8] в качестве спектральных сенсибилизаторов органических полупроводников – поли-Nэпоксипропилкарбазола и дифенилгидразонов бензальдегида предложено использовать тройные комплексы трифенилметановых (ТФМ) красителей. Тройные комплексы или ионные ассоциаты ТФМкрасителей — соединения общей формулы R⁺Y⁻, где R^+ – катион красителя, а Y^- – комплексный анион, содержащий металл (InCl₄-, TlCl₄-, SbCl₆-, GaCl₄-) [9]. В работе [8] рассмотрены закономерности спектральной сенсибилизации ПЭПК тройными комплексами и показано влияние аниона и катиона красителя на эффективность сенсибилизации. Однако вопрос о первичных фотохимических процессах в работе не рассматривается и неясно, существуют ли какие-либо взаимодействия между красителем и ПЭПК или красителем и дифенилгидразоном в основном или возбужденном состоянии.

Цель данной работы — исследование процессов взаимодействия $T\Phi M$ -красителя или тройного комплекса $T\Phi M$ -красителя и $\Pi \ni \Pi K$ в основном состоянии.

Методика эксперимента

Тройные комплексы $T\Phi M$ -красителей — бриллиантового и малахитового зеленого, метилового и кристаллического фиолетового с комплексным анионом $TlCl_4$ синтезировали по методикам, опи-