ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 276

1976

УДК 537.52

НЕКОТОРЫЕ ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВЫСОКОЧАСТОТНОГО ФАКЕЛЬНОГО РАЗРЯДА

И. А. ТИХОМИРОВ, В. Л. ТЕПЛОУХОВ, В. А. ВЕРНЯЕВ, Вик. Л. ТЕПЛОУХОВ, А. Г. КАРЕНГИН, С. М. ГОГЛЕВ

(Представлена научным семинаром физико-технического факультета)

Экспериментально изучено распределение мощностей в системе высокочастотный генератор — высокочастотный факельный разряд средней мощности при атмосферном давлении. Получены значения к.п.д. и соз ф в разряде. Определены величины активного сопротивления и емкости высокочастотного факельного разряда. Рассчитано число эффективных столкновений электронов с тяжелыми частицами в канале в. ч. факельного разряда. Показано, что электрофизические параметры факельного разряда в сильной степени зависят от величины мощности, подводимой к разряду.

Иллюстраций 6, таблиц 4, библиографий 5.

В последнее время большое внимание уделяется изучению низкотемпературной плазмы газовых разрядов и, в частности, плазмы высокочастотного факельного разряда. Ряд особенностей этого разряда дела-

Рис. 1. Схема экспериментальной установки. 1 — высокочастотный генератор ЛГД-12; 2 пояс Роговского; 3 — электрод; 4 — плазмотрон; 5 — катодный вольтметр типа «Орион»; 6 — делитель напряжения ДНЕ-6; 7 катодный вольтметр типа «Орион»; 8—датчик температуры; 9 — датчик расхода воды.

ет его весьма перспективным для различных областей химитехнологии. Отсюда ческой становится понятным вся важность пристального изучения особенностей поведения этого характеристик разряда, свойств его, процессов, определяющих его возникновение и устойчивое существование. Выяснению некоторых экспериментальных характеристик и физических свойств высокочастотного факельного разряда и посвящена данная работа.

Существующая по данному вопросу литература, как правило, освещает исследования, проводившиеся с высокочастотным факельным разрядом малой мощности [1, 2].

При этом тепловая мощность разряда составляла от нескольких десятков до одной-двух сотен ватт, а геометрическая длина факела была порядка нескольких сантиметров [1, 2, 3]. Однако для промышленного применения нужны разряды значительно более высоких мощностей. В этой связи понятен интерес, проявляемый нами к исследованию разрядов повышенной мощности от 1 до нескольких десятков киловатт. 60 Схема экспериментальной установки для проведения исследований представлена на рис. 1. В качестве источника высокочастотной энергии использовался промышленный высокочастотный генератор ЛГД-12 (1) с колебательной мощностью 12 квт и рабочей частотой 20—25 мгц. Высокочастотный факельный разряд возбуждался в медном плазмотроне с водяным охлаждением стенок. В эксперименте измеряли количество энергии, выделяющееся в плазмотроне и на аноде генераторной лампы. Замерялось напряжение на электроде при помощи катодного вольтметра марки «Орион», подключенного через стандартный делитель напряжения типа ДНЕ-6. Ток в разряде измерялся при помощи высокочастотного трансформатора тока. Напряжение на аноде генераторной лампы измерялось электростатическим вольтметром типа С-96. Полученные результаты представлены в табл. 1.

Таблица 1

№ п. п.	Анод- ный ток	На- пря- жение на аноде U _a	Мощ- ность от выпр. P _B	В. ч. напр.	В. ч. напр. на элект- роде U_	Ток сетки <i>I</i> с	Калориметриро- вание разряда			Калориметриро- вание анода		
				на элект- роде <i>U</i> ~			t_0	t	Q	to	t	Q
alt -	a	квт	квт	кв	a	a	°C	°C	-г/сек	°C	°C	г/сек
110	1,05	4,32	4,65	1,30	1,16	0,08	3	9,5	20	3	9	148
2	1,20	4,30	5,15	1,30	1,22	0,09	3	11,5	19,2	3	9,5	148
3	1,40	4,25	6,0	1,25	1,35	0,1	3	13,5	17,8	3	10,5	148
4	1,70	4,25	7,25	1,25	1,62	0,12	3	16	15,6	3	12	148
5	1,95	4, 25	8,55	1,20	1,90	0,13	3	19	13,5	3	14	148
	all and the	Name of the	to the property of the		S. W. M. M. K.	Protect of a	The second	1998 11-14	Contraction of the	Fred the barry of	Call States	

Результаты измерений позволяют рассчитать важные энергетические и электрофизические характеристики разряда и проследить их изменение с изменением мощности разряда. Воспользовавшись рядом известных формул, можем оценить тепловую мощность $P_{\rm T} = Q \cdot c \cdot \Lambda_{\rm T}$, выделяемую в разряде; полную мощность $P_{\Phi} = \frac{I_{\sim} U_{\sim}}{2}$, подводимую к разряду; а также колебательную мощность в. ч. генератора $P_{\rm K} = P_{\rm B} - \frac{P_{\rm A}}{2}$. Здесь $P_{\rm B}$ — мощность выпрямителя высокочастотного генератора, $P_{\rm A}$ — мощность потерь на аноде. Результаты расчетов представлены в табл. 2.

Таблица 2

№ п.п.	Мощность от выпря- мителя P _в	Мощность потерь на аноде <i>P</i> _a квт	Колеба- тельная мощ- ность P_{κ} <i>ква</i>	Полная мощ- ность в разряде <i>ква</i>	Тепловая мощность в разряде $P_{\rm T}$ <i>квт</i>	К.п.д. в.ч. контур- разряд Л	COS φ
	And All and a state	MAR AND AND	1 1 N 10		A LEO TA TANK	ATTAL & A	and the second
1	4,65	3,86	0,87	0,76	0,54	0,62	0,71
2	5,15	4,00	1,15	0,78	0,68	0,6	0,86
3	6,0	4,7	1,5	0,85	0,8	0,53	0,94
4	7,25	5,6	1,65	1,02	0,85	0,51	0,84
5	8,55	6,8	1,7	1,18	0,91	0,52	0,68

61

на основе которой построены кривые, показывающие изменение распределения мощностей с ростом нагрузки генератора рис. 2. Заштрихованная часть на графике показывает величину колебательной мощности.

Рис. 2. Распределение мощности в системе в. ч. генератор — разряд. $P_{\rm T}$ — тепловая мощность в разряде; $P_{\rm B}$ — мощность выпрямителя; $P_{\rm a}$ — мощность потерь на аноде лампы.

На рис. З представлена вольт-амперная характеристика высокочастотного факельного разряда. По известным формулам были рассчитаны значения коэффициента полезного действия η и соя ф коэффициента мощности разряда. Результаты представлены в табл. 2 и на рис. 4.

Pr. Bm

(2)

Представляет интерес расчет активного и реактивного сопротивлений в нагрузке факельного разряда. Известно, что тепловая мощность, выделяемая в разряде, может быть представлена в виде

$$P_{\rm r} = \frac{1}{2} \cdot I_{\sim}^2 \cdot r_{\rm \phi},\tag{1}$$

где *I*_~ — значение разрядного тока.

Отсюда величина активного сопротивления

$$r_{\Phi} = \frac{2P_{\tau}}{I_{\sim}^2}$$

62

и величина реактивного сопротивления

$$X = \frac{1}{\omega C} = r_{\phi} \cdot \operatorname{tg} \varphi = \frac{2P_{\tau} \sqrt{1 - \cos^2 \varphi}}{I_{\sim}^2 \cdot \cos \varphi}.$$
 (3)

Емкость факельного разряда равна

$$C_{\phi} = \frac{I_{\sim}^2 \cdot \cos\varphi}{2 \cdot \omega \cdot P_r \cdot \sqrt{1 - \cos^2\varphi}} \tag{4}$$

Результаты расчета представлены в табл. 3 и на графике рис. 5. Максимум значения активного сопротивления r_{Φ} совпадает с максиму-

Таблица 3

№ п. п.	Тепловая мощность разряда $P_{\rm T}$	В. ч. ток разряда Г~	cos q	Активное сопротивл. факела r _ф	Емкость факела С _ф	Примечание
	квт	a		ОМ	пкф	and prices and the second
1	0,54	1,16	0,71	800	9,2	
2	0,68	1,22	0,86	1060	11,6	RAHOLHAN
3	0,8	1,35	0,94	890	22,0	$\omega = 2\pi \cdot 2, 2 \cdot 10^7$
4	0,85	1,62	0,84	650	17,0	A CONTRACT OF A
5	0,91	1,90	0,68	530	14,2	At is and the
	1 Station of the second	1.1	(Dian)	1 Marine and	1. 1.	PERSONAL ST.

мом коэффициента полезного действия η : при максимальном значении емкости C_{ϕ} в разряде наблюдается максимум коэффициента мощности

разряда. Известно, что сопротивление канала факельного разряда может быть записано

$$r_{\phi} = \frac{l}{\gamma \cdot S}, \qquad (5)$$

где ү — удельная проводимость плазмы, усредненная по объему. С другой стороны, если рассматривать канал факельного разряда, как уединенный проводник, то емкость такого проводника запишется

$$C_{\rm db} = \varepsilon \cdot l.$$
 (6)

Рис. 5. Зависимость емкости и активного сопротивления разряда от выделяемой мощности.

Если записать обычные выражения для є и у плазмы [5]:

$$\varepsilon = 1 - \kappa_{\varepsilon} \cdot \frac{\omega_{Le}^2}{(\omega^2 + \gamma_{\mathsf{s}\varphi}^2)} \,. \tag{7}$$

$$\tilde{\gamma} = \kappa_{\delta} \cdot \frac{\omega_{Le}^2 \cdot \nu_{\mathfrak{s}\Phi}}{(\omega^2 + \nu_{\mathfrak{s}\Phi}^2) \cdot 4\pi} , \qquad (8)$$

63

(к и к – множители, численные значения которых известны) и подставить их в выражения (5) и (6), то получим:

$$C_{\phi} = (\varepsilon - 1) \cdot l = -\kappa_{\varepsilon} \frac{\omega_{Le}^{2} \cdot l}{(\omega^{2} + \gamma_{\Im\phi}^{2})}, \qquad (9)$$

$$\frac{1}{r_{\phi}} = \gamma \frac{S}{l} = \kappa_{\sigma} \frac{\omega_{Le}^2 \cdot \nu_{\vartheta \phi} \cdot S}{(\omega^2 + \nu_{\vartheta \phi}^2) \cdot 4\pi \cdot l} .$$
(10)

Комбинируя выражения (9) и (10), получим

$$C_{\phi} \cdot r_{\phi} = \frac{\kappa_{\varepsilon} \cdot 16 \cdot l^2}{\kappa_{\sigma} \cdot d^2 \cdot \nu_{\phi\phi}}$$

$$a_{\phi} = 16 \frac{\kappa_{\varepsilon} \cdot l^2}{\kappa_{\sigma} \cdot d^2 \cdot \nu_{\phi\phi}}, \qquad (11)$$

или

$$\nu_{\mathfrak{s}\phi} = 16 \, \frac{\kappa_{\varepsilon} \cdot l^2}{\kappa_{\sigma} \cdot d^2 \cdot C_{\phi} \cdot r_{\phi}}, \qquad (11)$$

Данное выражение дает возможность подсчитать эффективную частоту столкновений электронов с тяжелыми частицами. В нашем случае $v_{9\phi}^2 \gg \omega^2$ и, следуя работе [5], $\kappa_{\epsilon} = 1,51$ и $\kappa_{\sigma} = 1,13$. Результаты расчета представлены в табл. 4 и на графике рис. 6.

-		-				-	
0.121	2	n	T	LT.	TT	2	4
1	a	U	10	I	4	a	T

№ ′п. п.	Тепловая мощность разряда Р _т	В. ч. разряд- ный ток <i>I</i> ~	Сопротив- ление факела гф	Емкость факела С _ф	Длина канала в. ч. факельн. разряда <i>l</i>	Частота соуда- рений у _{эф} ·10 ⁻¹³	Приме- чание
A CONTRACTOR	квт	a	ОМ	пкф	см	сек ⁻¹	
1	0,54	1,16	800	9,2	12	. 0,27	in in
2	0,68	1,22	1060	11,6	24	0,62	abok it
3	0,8	1,35	890	22,0	271	0,5	d = 4 MM
4	0,85	1,62	650	17,0	29	1,02	1992
. 5	0,91	1,90	530	14,2	32	1,82	
	a data data per			10.00	·		162 18
1	0,54	1,16	800	9,2	12	0,45	1-1-24
2	0,68	1,22	1060	11,6	24	1,1	1994 Maria 11
3	0,8 .	1,35	890	22,0	27	0,89	d = 4 MM
4	0,85	1,62	650	17,0	29	1,82	A SHE HALL
5	0,91	1,90	530	14,0	32	3,25	
N'internal	a start is	all the	Lard Carlo and		17 12 11		1 - Alt

При расчете было принято допущение, что диаметр канала факельного разряда приблизительно остается постоянным.

Точки перегиба, имеющиеся при кривых рис. 6, появляются, повидимому, вследствие того, что в реальном случае толщина канала факельного разряда не остается постоянной: На участке АВ кривой сравнительно малое возрастание v_{эф} объясняется тем, что на этом интервале происходит быстрое увеличение объема факела за счет резкого возрастания длины факела: при изменении мощности на 140 вт длина факела увеличивается на 12 см. Для сравнения отметим, что на участке СД при возрастании мощности на 110 вт длина факела увеличивается лишь на 5-6 см. На участке ВС происходит значительное увеличение диаметра факела при малом увеличении длины. На участке СД

рост геометрических размеров факела замедляется, при этом происходит ускоренное повышение температуры в нем. Согласно работе авторов [1], измерения r_{Φ} и c_{Φ} , проведенные для факельного разряда

малой мощности ($\sim 70 \, \text{вт}$), дали значения $r_{\phi} = 10000 \, \text{ом}$ и $C_{\phi} = 1 \, n\phi$. Сравнивая полученные нами значения (например, при помощи 700 *ет* $r_{\phi} = 1060 \, \text{ом}, \, C_{\phi} = 11 \, n\phi$), видим, что физические параметры высокочастотного факельного разряда в значительной степени зависят от мощности, подводимой к разряду.

Интересно отметить также, что произведение $C_{\Phi}r_{\Phi}$ в обоих случаях имеет равное по порядку величины значение:

Рис. 6. Зависимость эффективной частоты столкновений от мощности разряда

$$C_{\phi}r_{\phi} = 10^4 \cdot 10^{-12} \approx 10^3 \cdot 10^{-11} \approx 10^{-8}.$$

Известно, что $C_{\Phi}r_{\Phi} = \tau$,

где т — постоянная времени цепи, которая определяет периодичность происходящих в ней процессов.

В нашем случае $\tau \approx 10^{-8}$ соответствует частоте высокочастотной мощности, питающей разряд. Аналогичные оценки, проведенные для в.ч. факельного разряда, возбуждаемого от промышленных генератсров типа ЛД1-4, ЛД4-10 и ЛД1-40 показывают, что соотношение

$$C_{\phi}r_{\phi} \approx \frac{1}{f}$$

соблюдается с точностью ошибки измерения во всех этих случаях.

ЛИТЕРАТУРА

1. А. А. Кузовников. Научные доклады высшей школы. Физ.-мат. науки, 1958, № 4, 191.

2. Дж. Кристеску, Р. Григоровичи. «Оптика и спектроскопия», 1959, № 6, вып. 2, 129.

3. А. В. Качанов, Е. С. Трехов, Е. П. Фетисов. Сб. «Физика газоразрядной плазмы». 1968, вып. 1.

4. Б. М. Бетин. Радиопередающие устройства. М., «Высшая школа», 1972.

5. В. Л. Гинзбург. Распространение электромагнитных волн в плазме. М., «Наука», 1967.

5. Заказ 4728.