Том 277

О ПЕРСПЕКТИВНОСТИ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ ПСЕВДОСЛУЧАЙНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И. М. СОБОЛЯ

В. В. ЗАХАРОВ, В. Г. СМИРНОВА

(Представлена научным семинаром лаборатории вычислительной техники и автоматизации НИИ ЯФЭА)

В последние годы широкое применение получили методы вычисления многомерных интегралов, основанные на применении псевдослучайных последовательностей для образования узлов интегрирования [1—3]. В связи с этим можно отметить смежные области применения псевдослучайных последовательностей.

— В большинстве задач моделирования сложных объектов критериальные соотношения также представимы в виде некоторых мно-

гомерных интегралов [2], хотя и не всегда в явной форме.

— В методах поиска типа [4, 5], основанных на предварительном рассеянии испытаний оптимизируемой функции, время поиска существенно зависит от равномерности рассеяния.

— В задачах планирования экспериментов [6] оптимальная стратегия состоит в наиболее равномерном заполнении испытаниями про-

странства переменных.

Все это заставляет особое внимание уделять качеству генерирования псевдослучайных последовательностей. В настоящей работе предпринята попытка численного сравнения некоторых детерминированных последовательностей [1, 2, 3] по критерию равномерности генерируемых псевдослучайных величин. Установление эффективности этих методов теоретическим путем затруднительно, ибо соответствующие соотношения носят асимптотический характер.

На ЦВМ БЭСМ-4 экспериментально сравнивались последовательности Соболя [3] (ЛП_т-последовательности) с часто применяемыми на практике последовательностями, задаваемыми типовыми датчиками случайных чисел (ДСЧ-последовательности, датчик № 4 из [7]), а также с последовательностями Коробова (К-последовательности, [2]). Эффективность последовательностей устанавливается путем сравнения точности вычисления многомерных интегралов, узлы интегрирования которых конструировались из соответствующих последовательностей.

Вычислялись интегралы от следующих 4 функций возрастающей

сложности:

$$f_1 = \sum_{i=1}^{n} a_i x_i, f_2 = \sum_{i=1}^{n} b_i x_i^2,$$

$$f_3 = \sum_{i=1}^{n} (a_i x_i^3 + b_i x_i^2 + c_i x_i),$$

$$f_4 = \sum_{i,j=1}^n a_{ij} x_i x_j,$$

коэффициенты которых в каждой задаче выбирались с равной вероятностью из (0,1). Таким образом, эксперименты проводились на до-

вольно гладких функциях.

В основном эксперименте (табл. 1—4) был выбран критерий, позволяющий найти минимальное значение величины N, которое обеспечивало заданное значение погрешности ε . Выбор такого, несколько необычного критерия был обусловлен потребностью в бесконечной последовательности узлов, не зависящих от N, и используемых в схемах поиска минимума функции многих переменных [4, 5].

Для каждой из приведенных функций решалось 5 задач, отличавшихся друг от друга набором коэффициентов. Размерность (n) вычисляемых интегралов была равна 3, 5, 7, 9, 11, 13. В таблицах приводятся усредненные по 5 задачам наименьшие значения N, при которых удовлетворялась заданная точность є вычисления интегралов.

Таблица 1

.0	١.	
-1	4	

3118	10-1		10-2		10-3		10-4	
n	ДСЧ	ЛΠτ	ДСЧ	$J\Pi_{\tau}$	ДСЧ	ЛΠτ	ДСЧ	ЛΠτ
3	8	8	48	21	262	112	1856	587
3 5	8,	8	29	17	72	125	1304	458
7	8	8	120	26	507	. 78	2179	466
9	35	8	198	16	• 467	80	$>10^{5}$	320
11	16	8	213	34	638	56	$>10^{5}$	400
13	21	8	94	16	472	139	$>10^{5}$	512

Таблица 2

 f_2

ε	10-1		10-2		10-3		10-4	
n	ДСЧ	ЛПτ	ДСЧ	ЛΠτ	ДСЧ	ЛΠτ	ДСЧ	ЛΠτ
3 5 7 9 11	8 8 11 8 8	8 8 8 8 10	93 43 117 106 59 82	30 29 62 48 35 72	234 128 194 445 478 > 105	184 162 314 155 398 360	$\begin{array}{c} >10^{5} \\ >10^{5} \\ >10^{5} \\ >10^{5} \\ >10^{5} \\ >10^{5} \\ >10^{5} \end{array}$	1122 1080 1029 685 678 883

Таблица 3

 f_3

ε	10	10-1		10-2		10-3		10-4	
n	ДСЧ	ЛΠτ	ДСЧ	ЛΠτ	ДСЧ	ЛΠτ	ДСЧ	ЛПъ	
	* 4			THE STATE OF THE S	Superior and			The Market	
3	19	8	109	29	323	243	$>10^{5}$	13107	
5	13	16	74	51	218	720	$>10^{5}$	1405	
7	21	21	64	123	1118	304	$>10^{5}$	1333	
9	16	11	88	69	754	270	$>10^{5}$	1048	
11	18	29	134	222	467	613	$>10^{5}$	1008	
13	45	30	243	98	$>10^{5}$	498	$>10^{5}$	1060	

ε	10-1		10-2		10-3		10-4	
n	ДСЧ	ЛΠτ	ДСЧ	ЛΠτ	ДСЧ	ЛΠτ	ДСЧ	ЛΠτ
				The late	5.		orania de la compania del compania del compania de la compania del compania del compania de la compania de la compania del	(andipa)
3.	8	8	72	. 22	293	202	$>10^{5}$	885
5	18	18	74	139	1024	856	$>10^{5}$	1734
7	30	32	182	210	2546	574	$>10^{5}$	1528
9	45	11	94	142	789	734	$>10^{5}$	3766
11	94	29	312	224	$>10^{5}$	1408	$>10^{5}$	2955
13	67	32	179	128	$>10^{5}$	1021	$>10^{5}$	8184

Факт большей эффективности последовательностей Соболя при вычислении интегралов не относится к числу неожиданных. Теоретически эти последовательности обеспечивают сходимость порядка 1/N, тогда как ДСЧ-последовательности — лишь $1/\sqrt{N}$. Из приводимых таблиц, однако, следует, что эта асимптотика начинает выполняться лишь при $n \ge 10$ и $\varepsilon \le 10^{-4}$. В области значений n < 10, $\varepsilon > 10^{-4}$ оба типа последовательностей фактически более эффективны, нежели этого можно было ожидать, исходя из их асимптотических свойств. Причем ЛП_г-последовательности практически всюду в рассмотренной области значений n, N, ε эффективнее асимптотического прогноза.

При экспериментировании с последовательностями Соболя были получены и некоторые аномальные результаты. Так, в табл. 3 при n=3 точность $\epsilon=10^{-4}$ была достигнута в среднем лишь после 13 тыс. испытаний в каждой из 5 задач. Так, вычисление интеграла от функции

$$f_3(x) = 0.5177 x_1^3 + 0.9313 x_2^3 + 0.3243 x_3^3 + 0.7804 x_1^2 + 0.661 x_3^2 + 0.1328 x_2^2 + 0.6661 x_1 + 0.5141 x_2 + 0.2726 x_3$$

с погрешностью $\varepsilon = 10^{-4}$ потребовало N > 15000, в то время как для функции:

$$f_3(x) = 0.3335 x_1^3 + 0.0644 x_2^3 + 0.2619 x_3^3 + 0.0452 x_1^2 + 0.4834 x_2^2 + 0.5603 x_3^2 + 0.3452 x_1 + 0.7152 x_2 + 0.2776 x_3.$$

оказалось достаточным N = 488. По-видимому, это объясняется сильным разбросом асимптотического поведения ЛП-последовательностей.

Вместе с тем в целом асимптотические закономерности выполняются. Это видно из рис. 1, где приведены асимптотические функции

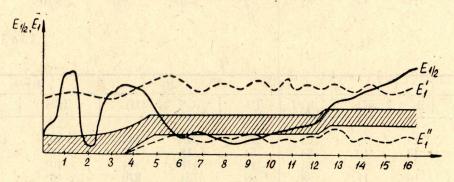


Рис. 1. Асимптотические свойства ДСЧ (кривая $E_{1/2}$) и ЛП $_{7}$ (кривая E_{1}' и E_{1}'') последовательностей.

$$E_{1/2}(N) = \frac{\varepsilon(N)}{\sqrt{N}}, E_1(N) = \frac{\varepsilon(N)}{N}, N = 0(32)$$
 16000.

для линейной функции $f_1(x)$. При идеальном сближении асимптотики кривые должны приближаться к некоторым прямым $E_{1/2}$ (N) = const, E_1 = const. На самом деле асимптотика ДСЧ-последовательностей ($E_{1/2}$, сплошная линия на рис. 1) воспроизводит сложные низкочастотные колебания, а значения асимптотической функции последовательностей Соболя (E_1) имеют очень сильный разброс и заключены в основном между пунктирными линиями на рис. 1. В заштрихованной области сосредоточено около 45% всех значений $E_1(N)$. Таким образом, если приближенно принять центровую линию этой области за кон-

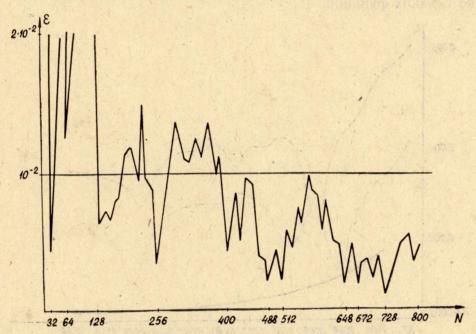


Рис. 2. Зависимость точности интегрирования от длины $\Pi\Pi$ τ -последовательности

станту асимптотики C_1 , то окажется, что $C_1 \approx 0.8$. Для ДСЧ-последовательностей наиболее вероятная константа асимптотики $C_1/^2 \approx 0.2$.

Из рис. 1 можно также увидеть, что качество ДСЧ-последовательностей весьма неоднородно в различных обширных областях значений N. Так при 6000 < N < 1200 асимптотика $E_{1/2}$ хорошо выполняется с весьма малым значением константы асимптотики $C_{1/2}$. При значениях N > 12000 сходимость, обусловливаемая ДСЧ-последовательностя-

ми, явно ниже, чем $N^{-\frac{1}{2}}$. Такое поведение делает актуальной постановку задачи поиска наиболее равномерных участков ДСЧ-последовательностей путем статистического анализа соответствующего датчика СЧ.

Сильный разброс асимптотики $\Pi\Pi$ -последовательностей, а также анализ табл. 1-4 заставляет предположить наличие таких значений N, для которых погрешность вычисления многомерных интегралов значительно ниже, чем среднеасимптотическая. Вычислительные эксперименты показали, что такие значения $N=N_c$ действительно имеются и образуют последовательность:

 $N_c = 32, 64, 128, 248, 256, 400, 448, 488, 648, 992, 1000, 1176, 1408, 1504,$

1792, 2048, 2272, 3008, 3488, 4096, 5120, 5568, 6208, 6400, 6720, 6848, 7040, 7360, 8192, 8356.

Как видно из рис. 2, точность вычислений интегралов при этих значениях N значительно выше, чем в некоторой весьма малой окрестности их, а асимптотика имеет порядок $1/N^{1+\alpha}$, $\alpha > 0$.

Очень важно подчеркнуть, что подпоследовательность N_c сохраняет свои лучшие в смысле равномерности свойства при любых исследованных n и любой из функций f_1-f_4 . Таким образом, в практических расчетах имеет смысл выбирать $N\!=\!N_c$, ибо естественно предположить, что выделенная $\Pi\Pi_{\tau}$ -последовательность сохраняет свойства повышенной равномерности и для всего класса непрерывных достаточно гладких функций.

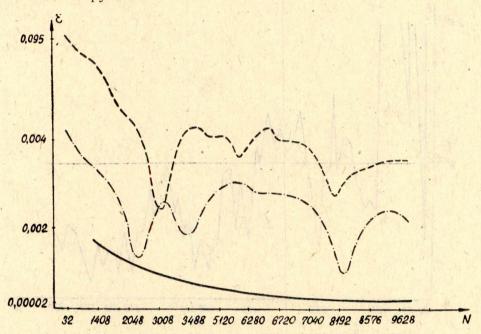


Рис. 3. Зависимость точности интегрирования от длины наилучших подпоследовательностей ДСЧ и Л Π_{τ} .

Для ДСЧ-последовательностей также было замечено некоторое улучшение равномерности при определенных $N = N_D$. Однако эти N_D для каждой функции различны, что делает невозможным практическое применение этих свойств ДСЧ-последовательностей.

На рис. З приведены графики зависимости $\varepsilon(N)$ при интегрировании функции вида f_3 (n=5) для Л Π_τ -последовательностей (штрихпунктирной линии), для ДСЧ-последовательностей (пунктирная линия) и для сеток Коробова (сплошная линия). Для построения кривых были использованы наилучшие длины подпоследовательностей (N_D и N_c). Другими словами, кривые для ДСЧ и Л Π_τ на рис. З суть огибающие снизу ломаных, подобных изображенной на рис. 2.

Из рис. З видно, что метод Коробова позволяет производить вычисления с наименьшей погрешностью. Однако при больших размерностях наименьшее значение N, гарантирующее высокую точность, достаточно велико. Например, для n=10 минимальное значение N=85633. В некоторых задачах практического моделирования величину N необходимо выбирать меньше даже по порядку. Таким образом, сетка Коробова не позволяет непрерывно управлять точностью вычис-

лений в зависимости от величины N. Необходимость применения произвольных значений N (пусть с меньшей точностью вычислений) возникает и при использовании указанных методов поиска [4], [5]. При этом возникающая погрешность сглаживается самим методом поиска. Однако произвольные значения N невозможно выбирать, исходя из метода Коробова. От этих двух существенных недостатков свободен метод генерирования псевдослучайных последовательностей, предложенных M. M. Соболем.

ЛИТЕРАТУРА

- 1. Н. П. Бусленко, Д. И. Голенко, И. М. Соболь, Ю. А. Шрейдер. Метод статистических испытаний. М., Физматгиз, 1962.
- 2. Н. М. Коробов. Теоретикочисловые методы в приближенном анализе. М., Физматгиз, 1963.
- 3. И. М. Соболь. Многомерные квадратурные формулы и функции Хаара. М., «Наука», 1969.
- 4. И. Б. Моциус. Многоэкстремальные задачи в проектировании. М., «Наука», 1967.
- 5. В. В. Захаров. Один метод случайного поиска. Изв. АН СССР, «Техническая кибернетика», № 4, 1969.
- 6. В. В. Налимов, Н. А. Чернова. Статистические методы планирования экстремальных экспериментов. М., «Наука», 1965.
- 7. В. Ф. Лященко. Программирование для цифровых вычислительных машин типа M-20. М., «Советское радио», 1967.

The second continuous continuous