Том 280

цифровое моделирование фильтров неконсолидированных пористых сред

В. И. СЕСЬ, В. С. КАРИХ

(Представлена научным семинаром НИИ ЭИ)

Использование формулы коэффициента фильтрации вида [1]

$$k = \frac{\varepsilon^2}{5 S_0^2 (1 - \varepsilon)^2} ,$$

в основе вывода которой лежит понятие гидравлического радиуса, приводит к большим погрешностям (до 100%), здесь ϵ — пористость, S_0 —

удельная поверхность.

Величина погрешности объясняется тем, что математическая модель фильтра отражает свойства случайной упаковки сфер одного диаметра. Плотность такой модели, отношение объема твердой фазы $v_{\rm T}$ ко всему объему упаковки не может быть более 0,74... при систематической укладке и для случайных упаковок — не более 0,63 [3]. Для реальных структур с произвольным распределением гранул по размерам плотность может как угодно близко приближаться к единице.

Для изучения коэффициента фильтрации может использоваться цифровая модель, в которой внутренняя структура фильтра моделируется случайной упаковкой сфер, размеры которых имеют ту же

функцию распределения, что и гранулы фильтра.

Такая модель конструируется на ЦВМ и затем на ней рассчитываются необходимые параметры упаковки. Основным недостатком цифровой модели является ограниченность памяти вычислительных машин и значительное количество машинного времени, необходимого для конструирования модели.

В работе [4] предлагается для ускорения расчета заменить исходную упаковку, заданную размерами и частостью фракций, системой тетраэдров. Такая система получится при соединении отрезками цент-

ров контактирующих между собой сфер в исходной упаковке.

В настоящей работе описывается эксперимент по определению зависимости скорости фильтрации воздуха через слой золы от гранулометрического состава золы и проводится сравнительный анализ результатов эксперимента с расчетными данными, полученными по методике, описанной в работе [5].

Эксперимент

Фильтрация воздуха осуществлялась через навеску золы в 100 г заданного гранулометрического состава. Навеска помещалась в ци-

линдрический контейнер с постоянным диаметром и уплотнялась поршнем до получения слоя одной высоты во всех наблюдениях. Затем воздух из резервуара ограниченного объема с начальным давлением р, выпускался в атмосферу через описанный фильтр. При наблюдениях измерялось время, в течение которого давление в резервуаре снижалось до р_t. Во всех наблюдениях р₀ и р_t были постоянными. Давление в резервуаре изменяется со временем приблизительно по экспоненциальному закону [5]:

 $p_t = p_0 e^{-kt}, (2)$

где k — коэффициент фильтрации, t — время; или t = ck^{-1} , здесь c = lgp_t/lgp_0 — постоянное для всех наблюдений. Следовательно, экспериментально оценивалось время, величина которого обратно пропорциональна коэффициенту фильтрации.

Условия наблюдений приведены в табл. 1, где r_i — средний размер гранул порошка i-й фракции в μ к а f_i — относительная частость этих

гранул в штуках.

Таблица 1

Средний размер гранул гі, µк	Относительные частости f _i					
	Опыт 1	Опыт 2	Опыт З	Опыт 4		
25 56	140 37,5	70 6,5	140 12,5	280 12,5		
81	20		4	-		
130	1	1	1	1		

Эксперимент планировался для построения градуировочной кривой, а не из условий оптимальности его проведения, поэтому выбраны соответствующие составы.

Результаты измерений и расчетные приведены в табл. 2. В графе 1 табл. 2 приведены номера опытов, условия которых заданы в табл. 1. Во 2-й и 3-й приведены расчетные удельная поверхность и плотность, t — наблюдаемое время фильтрации.

Таблина 2

Номер опыта	S ₀	ρ	t	$\sigma_{\rm t}$	Т	Δ
1,	3,96	0,8068	1,67	0,08	1,64	0,03
2	4,56	0,8380	1,92	0,07	1,98	0,06
3	4,81	0,8219	2,27	0,10	2,14	0,13
4	6,44	0,8145	3,03	0,09	3,06	0,03

Дисперсионный анализ эксперимента позволил пренебречь вторым параметром структуры, плотностью ρ для данных условий. Следует отметить, что степень уплотнения порошка во всех наблюдениях была одна и та же, поэтому изменение плотности и удельной поверхности объясняется гранулометрическим составом. Плотность упаковки зависит лишь от относительных размеров гранул в данном эксперименте и не может служить однозначной оценкой фильтрационных способностей материала.

По результатам эксперимента построено уравнение регрессии S_0 на Т, которое имеет следующий вид:

$$T = 0.238 \, S_0^{1,4}, \tag{4}$$

где T — время фильтрации, S₀ — удельная поверхность, рассчитанная на цифровой модели. Время фильтрации, найденное из выражения (4), и отклонение его от наблюдаемого Δ приведены в графе 6 и 7 табл. 2. Отклонение наблюдаемых значений от расчетных не превышает 6%, результаты регрессионного анализа и величина отклонений показывают, что между временем фильтрации и удельной поверхностью, вычисленной на цифровой модели, существует тесная регрессионная зависи-

Обсуждение результатов эксперимента

Результаты эксперимента показывают, что метод тетраэдров можно успешно использовать для оценки величины удельной поверхности.

Экспериментальное обоснование применения данного метода для

расчета плотности структуры приведено в работе [6].

На основании этого можно сделать заключение о корректности использования метода тетраэдров [4] для оценки геометрических параметров случайных структур и особенно для нахождения оптимального по какому-либо параметру структуры (по плотности, удельной поверхности, числу соседей и т. п.).

Данному методу присущи все преимущества цифровых моделей: незначительная трудоемкость эксперимента, короткий срок его проведения, возможность получения любой информации о геометрии структуры и при моделировании другого объекта нет необходимости в коор-

динальной перестройке модели.

Недостатком модели является абстрагирование ее от формы минералогического состава и состояния поверхности гранул, образующих структуру и получение смещенных оценок параметров. Эти недостатки требуют в некоторых случаях введения коэффициентов, необходимость которых отпадает при нахождении относительных значений параметров структуры.

ЛИТЕРАТУРА

1. А. Э. Шейдеггер. Физика течения жидкостей через пористые среды. М., Гос. научно-техническое изд-во нефтяной и горнотопливной литературы, 1960. 2. Л. Ф. Тот. Расположение на плоскости, на сфере и в пространстве. М., Госиздат физико-математической литературы, 1958.

3. Scott C. D., Nature, vol. 188, N 4754, p. 908, 1960. 4. В. А. Воробьев, В. И. Сесь. Известия ТПИ, т. 251, Томск, Изд-во Томского университета, 1970.

5. Л. С. Лейбензон. Собрание трудов. Т. II, М., АН СССР, 1953. 6. В. А. Воробьев, И. Э. Наац, В. И. Сесь. Известия вузов, «Архитектура и строительство», Новосибирск, № 10, 1970.