ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 284

О ПРИМЕНЕНИИ МЕТОДА ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА ДЛЯ ИССЛЕДОВАНИЯ ПЕРЕХОДНЫХ ПРОЦЕССОВ СИНХРОННЫХ ИМПУЛЬСНЫХ ГЕНЕРАТОРОВ

В. П. ЛИТВИНОВ, А. В. ЛООС, Г. А. СИПАИЛОВ

(Представлена научным семинаром кафедр электрических машин и аппаратов и общей электротехники)

Переходные процессы в синхронных импульсных генераторах описываются нелинейной системой дифференциальных уравнений, аналитическое решение которых не представляется возможным вследствие наличия периодических коэффициентов и необходимости учета насыщения магнитной цепи.

Решение дифференциальных уравнений с периодическими коэффициентами, даже без учета насыщения или при приближенном учете его,

Рис. 1. Принципиальная схема синхронного импульсного генератора дает сложные выражения для токов и потокосцеплений [1]. В связи с этим большое значение приобретают исследования по исходной системе уравнений без введения упрощающих допущений с помощью АВМ и ЭЦВМ. Однако использование результатов расчетов, представляемых в виде графиков и таблиц, имеет известные трудности. Поэтому получение универсальной аналитической формулы, которая позволила бы рассчитывать значения выходных характеристик при любых сочетаниях параметров, не прибегая к сложному математическому аппарату, является важной задачей. Эту задачу позволяют решать методы планирования экспериментов, разработанные в современной математической статистике [2].

Рассмотрим решение этой задачи на примере синхронного импульсного генератора с коммутирующим устрой-

ством в цепи ротора, принципиальная схема которого приведена на рис. 1.

Работа такого генератора описана в [3]. Следует отметить, что в процессе работы происходит изменение структуры цепей генератора при замыкании коммутирующего аппарата К-2. Это обстоятельство вызывает еще большую сложность при решении поставленной задачи. Урав-

1974

нения переходных процессов при учете насыщения магнитной цепи рассматриваемого импульсного генератора имеют вид:

$$p \Psi_{c} + i_{c}(r_{c} + r_{H}) = 0,$$

$$p \Psi_{f} + i_{f}r_{f} = U_{f},$$

$$p \Psi_{Dd} + i_{Dd}r_{Dd} = 0,$$

$$p \Psi_{Dq} + i_{Dq}r_{Dq} = 0,$$

где

Q

P

$$\begin{split} i_{c} &= \frac{1}{L_{\delta c}} (\Psi_{c} - \Psi_{\delta d_{H}} \cos \gamma - \Psi_{\delta q_{H}} \sin \gamma), \\ i_{f} &= \frac{1}{L_{\delta f}} (\Psi_{f} - \Psi_{\delta d_{H}}), \\ i_{Dd} &= \frac{1}{L_{\delta Dd}} (\Psi_{Dd} - \Psi_{\delta d_{H}}), \\ i_{Dq} &= \frac{1}{L_{\delta Dq}} (\Psi_{Dq} - \Psi_{\delta q_{H}}), \\ \Psi_{\delta d_{H}} &= \eta (i_{f} + i_{Dd} + i_{c} \cos \gamma), \\ \Psi_{\delta q_{H}} &= \eta (i_{Dq} + i_{c} \sin \gamma), \\ x_{a \, \text{Hac}} &= \eta, \, \eta = f(\Psi_{\delta}), \\ \Psi_{\delta} &= \sqrt{\Psi_{\delta d_{H}}^{2} + \Psi_{\delta q_{H}}^{2}}. \end{split}$$

В уравнениях (1) приняты следующие обозначения:

ic, if, iDd, iDg — токи соответственно обмоток статора, возбуждения и демпферных по продольной и поперечной осям;

 $(r_{c}+r_{H}), r_{f}, r_{Dd}, r_{Dq}$ — активные сопротивления соответственно статорной обмотки с нагрузкой, возбуждения и демпферных по продольной и поперечной осям;

L^F_{σC}, L_{σf}, L_{σDd}, L_{σDd}— индуктивности рассеяний соответственно статорной обмотки возбуждения и демпферных по продольной и поперечной осям;

η — насыщенное значение индуктивного сопротивления взаимоиндукции, определяемое результирующим потоком в воздушном зазоре;

U_f — напряжение обмотки возбуждения;

 $\Xi \Psi_c, \Psi_f, \Psi_{Dd}, \Psi_{Dq}$ — потокосцепления обмоток соответственно статорной возбуждения и демпферных по продольной и поперечной осям;

Ψ_δ, Ψ_{δdн}, Ψ_{δqн} — потокосцепления соответственно в зазоре машины и его проекции по продольной и поперечной осям.

В качестве объекта исследования используем модель синхронного импульсного генератора, составленную по уравнениям (1), которая адекватно описывает поведение реальной машины. Выбирая сочетания параметров модели по определенному плану, можно получить в результате обработки данных опытов простую математическую модель генератора, связывающую выходные характеристики с его параметрами.

Математическая модель импульсного генератора может быть представлена некоторой функцией

(1)

где

α — выходная характеристика, подлежащая исследованию,

x₁, x₂, x₃,..., x_k — параметры генератора, которыми можно варьировать.

Аналитическое выражение функции (2) можно представить в виде полинома

$$\alpha = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i< j}^k \beta_{ij} x_i x_j + \sum_{i=1}^k \beta_{ii} x_i^2 + \dots,$$
(3)

(2)

где

β₀, β_i, β_{ii} β_{ii} — коэффициенты полинома.

Эксперименты, построенные по определенному плану, позволяют вычислить коэффициенты b_0 , b_i , b_{ij} , b_{ii} , которые являются статистическими оценками для теоретических коэффициентов β_0 , β_i , β_{ij} , β_{ii} и получить уравнение (3) в виде

$$y = b_0 + \sum_{i=1}^{k} b_i x_i + \sum_{i=1}^{k} b_{ij} x_i x_j + \sum_{i=1}^{k} b_{ii} x_i^2 + \dots,$$
(4)

тде

у — значение выходной характеристики, предсказанное уравнением.

В качестве параметров импульсного генератора, влияние которых на выходные характеристики подлежит исследованию, выбраны сверхпереходные индуктивные сопротивления статора и ротора. Динамическая постоянная $H_j = \infty$, т.е. $\omega = \text{const.}$ Выходные характеристики генератора в данном примере было решено оценить двумя показателями: $i_{y\pi}$ — амплитудой ударного тока, W_r — энергией, выделяемой в активной нагрузке за один импульс ударного тока.

Значения токов и энергии приводятся в общепринятой системе относительных единиц [4.].

В табл. 1 приведены основные уровни и интервалы варьирования параметров $x_{d}^{''}=X_{1}, x_{q}^{''}=X_{2},$

$$R_c = (r_c + r_{\rm H}) = X_3, \ r_D^d = X_4, \ r_D^q = X_5.$$

Таблица 1

Параметр	Основной	Интервал	Верхний	Нижний
	уровень	варьирования	уровень	уровень
$\begin{array}{c}X_1\\X_2\\X_3\\X_4\\X_5\end{array}$	0,05	0,01	0,06	0,04
	0,05	0,01	0,06	0,04
	0,046	0,022	0,068	0,024
	0,016	0,007	0,023	0,009
	0,016	0,007	0,023	0,009

Кодированные безразмерные параметры определяются соотношением

$$X_i = \frac{\widetilde{X}_i - X_{i0}}{\lambda_i} , \qquad (5)$$

где

X_i — кодированное текущее значение параметра;

10

Х, — натуральное текущее значение параметра;

X_{i0}— натуральное значение нулевого уровня;

λ, — натуральное значение интервала варьирования.

Для определения коэффициентов b_0 , b_i , b_{ij} , b_{ii} было решено воспользоваться униформ-рототабельным планом, ядром которого является полуреплика 2^{5-1} с генерирующим соотношением:

$$X_5 = X_1 X_2 X_3 X_4.$$

В данном случае существенное влияние на значение выхода оказывают не только линейные эффекты, но и парные взаимодействия, поэтому линейное приближение здесь неприемлемо. Используем для описания поверхности отклика (выходных характеристик) полином второго порядка. Для этого необходимо варьировать переменные не менее, чем на трех уровнях, что достигается применением так называемого композиционного планирования, в котором к ядру, образованному планированием для линейного приближения, добавляют ряд «звездных точек».

Звездное плечо определяется по формуле

$$\alpha = 2^{k-p/4},$$

где

0

p — количество линейных эффектов, приравненных к эффектам взаимодействия.

Оптимальными композиционными планами являются униформ-рототабельные планы, позволяющие получить симметричные информационные контуры и являющиеся в то же время почти ортогональными, благодаря чему коэффициенты регрессии при необходимости могут быть оценены независимым образом [2]. Матрица композиционного рототабельного униформ-планирования второго порядка для k = 5 и результаты опытов представлены в табл. 2.

Общее число коэффициентов регрессии при *k*=5 равно числу сочетаний

$$C_{k+d}^d = \frac{(k+d)!}{d!k!},$$

где

d — степень полинома, '

k — число независимых переменных.

Данная дробная реплика базируется на полном факторном эксперименте типа 2^4 , т. е. число опытов ядра равно $n_c = 16$.

Необходимое число точек «звезды» должно составлять

$$n_{\alpha} = 2k = 10.$$

Общее число точек плана составляет $N = n_c + n_a + n_0$, где $n_0 = 10 -$ число точек в центре плана, найденное из условия получения коэффициента λ_4 , влияющего на вид информационного профиля, меньшим единицы:

$$\lambda_4 = \frac{k(n_0 + n_{\pi})}{(k+2)n_{\pi}} < 1,$$

где

 $n_{\pi}=n_{\alpha}+n_{c}.$

Таблица 2

Contract of the second s	NAME AND ADDRESS OF TAXABLE PARTY.				AND DESCRIPTION OF A DE	In the second		
№ п/п		X ₁		X ₃	X4	X ₅ .	У1	y ₂
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\end{array} $	+++++++++++++++++++++++++++++++++++++++	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	$\begin{array}{c} ++ \\ ++ \\ ++ \\ ++ \\ ++ \\ ++ \\ ++ \\ ++$	$\begin{array}{c} + + + + \\ + + + \\ - \\ - \\ - \\ + + + + \\ - \\ -$	++++++++++++++++++++++++++++++++++++	+ + + + + + + + + +	15,7 $17,3$ $16,0$ $17,2$ $27,6$ 31 30 $31,7$ $16,9$ $19,3$ $17,0$ $19,2$ $29,6$ $35,3$ $33,35$ $36,4$ $19,95$ $25,25$ $21,8$ $22,75$ $13,95$ $49,1$ $20,0$ $24,2$ $22,0$ $22,1$ $21,9$	$\begin{array}{c} 23,85\\ 26,8\\ 26,9\\ 27,6\\ 33,7\\ 36,1\\ 36,45\\ 45,4\\ 26,8\\ 30,2\\ 28,75\\ 33,35\\ 34,3\\ 45\\ 44,8\\ 47,7\\ 30,25\\ 39,55\\ 31,00\\ 38,6\\ 22,9\\ 2,0\\ 30,7\\ 30,4\\ 32,7\\ 36,9\\ 34,65\\ \end{array}$

Таблица З

A Constant	${y_1}$	${y}_2$			
Параметры и их взаимодействия	коэффициенты				
	b ₀ , b	i, bij, bii			
$egin{array}{c} X_0 & X_1 & X_2 & X_3 & X_4 & X_5 & X_1^2 & X_1^2 & X_2^2 & X_2^2 & X_2^2 & X_3^2 & X_2^2 & X_3^2 & $	21,0* -1,238* -0,419* -7,77* -1,205* -0,055* 0,216* 0,128* 2,5*	$\begin{array}{c} 34,2*\\ -2,3*\\ -2,05*\\ -2,39*\\ -2,145*\\ -1,09*\\ 0,0865*\\ 0,867*\\ -4,78*\\ 2,075*\\ \end{array}$			
$egin{array}{c} X_4 & X_5^2 & \ X_1 X_2 & \ X_1 X_3 & \ X_1 X_4 & \ X_1 X_5 & \ X_2 X_3 & \ X_2 X_4 & \ X_2 X_5 & \ X_3 X_4 & \ X_3 X_5 & \ X_4 X_5 & \ X_5 & \ X_4 X_5 & \ $	0,0915* -0,312* 0,417* 0,343* 0,1245 -0,488* 0,0967 -0,118 0,516* 0,0486 0,248*	$\begin{array}{c} 0,973^{\circ}\\ 0,867^{\ast}\\ -0,145\\ 0,84^{\ast}\\ 0,416^{\ast}\\ 0,006\\ 1,03^{\ast}\\ 0,1515\\ 0,1325\\ 0,392^{\ast}\\ 0,688^{\ast}\\ 0,0126\end{array}$			

Коэффициенты полиномов определяются по формулам [2]. Значения коэффициентов приведены в табл. 3.

После нахождения коэффициентов полиномов, по критерию Стьюдента проверяется их значимость. При этом все значимые коэффициенты должны быть больше произведения диспрессии коэффициентов $\sigma^2\{b\}$ на коэффициент Стьюдента t, взятый при достоверной вероятности 0,95 и числе степеней свободы $f_E = n_0 - 1$, $(t_{ra6n} = 2, 262)$.

Значения диспрессий для коэффициентов вычислялись по формулам:

$$\sigma^{2}\{b_{0}\} = \frac{2A\lambda_{4}^{2}(k+2)\sigma^{2}\{y\}}{N};$$

$$\sigma^{2}\{b_{i}\} = \frac{c\sigma^{2}\{y\}}{N};$$

$$\sigma^{2}\{b_{ii}\} = \frac{A[(k+1)\lambda_{4}-(k-1)]c^{2}\sigma^{2}\{y\}}{N};$$

$$\sigma^{2}\{b_{ij}\} = \frac{c^{2}\sigma^{2}\{y\}}{[\lambda_{4}N]};$$

$$c = \frac{N}{\sum_{u=1}^{N}X_{iu}^{2}};$$

$$A = \frac{1}{2\lambda_{4}[(k+2)\lambda_{4}-k]},$$

где

13

 $\sigma^{2}{y}$ — диспрессия опытов в центре плана,

и — номер опыта,

i=0, 1, 2, 3...

Значимые коэффициенты отмечены в табл. З звездочкой. Адекватность полиномов проверялась по критерию Фишера [2]. Получив значения коэффициентов для кодированных параметров с помощью (5), легко перейти к записи полиномов в натуральных величинах. Тогда полиномы для ударного тока и энергии в активной нагрузке имеют вид:

$$i_{y_{\partial}} = 68 - 349 \ x_{d}^{"} + 88 \ x_{q}^{"} - 865, 2 \ R_{c} - 727 \ r_{Dd} + + 2160 \ x_{d}^{"2} + 1280 \ x_{q}^{"2} + 5160 \ R_{c}^{2} + 2318 \ r_{Dd}^{2} + + 1870 \ r_{Dq}^{2} - 3120 \ x_{d}^{"} x_{q}^{"} + 1890 \ x_{d}^{"} R_{c} + + 4900 \ x_{d}^{"} \ r_{Dd} - 2220 \ x_{q}^{"} R_{c} + 3350 \ R_{c} r_{Dd} + + 5060 \ r_{Dd} r_{Dq};$$
(7)
$$V_{r} = 142 - 1610 \ x_{d}^{"} - 1707 \ x_{q}^{"} + 455, 7 \ R_{c} - 1356, 8 \ r_{Dd} - - 928 \ r_{Dq} + 8650 \ x_{d}^{"2} + 8670 \ x_{q}^{"2} - 9880 \ R_{c}^{2} + + 19850 \ r_{Dd}^{2} + 17700 \ r_{Dq}^{2} + 8400 \ x_{d}^{"} x_{q}^{"} + 5945 \ x_{d}^{"} r_{Dd} + + 4680 \ x_{q}^{"} R_{c} + 2545 \ R_{c} r_{Dd} + 4465 \ R_{c} r_{Dq}.$$
(8)

Полученные в результате эксперимента математические зависимости можно рассматривать как инструмент исследования синхронного им-

(6)

пульсного генератора при различных сочетаниях параметров. С помощью полиномов можно оценить вклад, вносимый каждым из параметров, т.е. провести качественное исследование импульсного генератора. В рассматриваемом примере на величину ударного тока наибольшее влияние оказывает сопротивление статора $R_c(b_3=7,77)$. Более

слабое влияние оказывает сверхпереходное индуктивное сопротивление $x_q^{"}$ демпферной обмотки по оси $q(b_2=0,419)$. Из парных взаимодействий следует отметить примерно соизмери-

Из парных взаимодействий следует отметить примерно соизмеримые $x_{a}^{''}R_{c}$, $R_{c}r_{Dd}$, $x_{a}^{''}r_{Dd}$.

r

На величину энергии в активной нагрузке наибольшее влияние оказывают $R_c(b_3=2,39), x_d^{"}(b_1=2,3)$ и меньшее $r_{Dq}(b_5=1,09)$. Из парных взаимодействий следует отметить влияние

 $x_d R_c, x_d r_{Dd}, x_q R_c.$

Проведенный анализ полученных полиномов соответствует физическим представлениям переходных процессов в синхронных импульсных генераторах [5].

При помощи полученных математических зависимостей можно находить значения выходных характеристик синхронного импульсного генератора с учетом всех параметров, насыщения магнитной цепи ротора. Также можно построить «зоны существования» различных значений $i_{y_{d}}$. W_r от параметров генератора в принятых интервалах варьирования последних [6].

à

Y/

T

С помощью «зон существования» можно выяснить, реализуемы ли требования, предъявляемые к i_{ya} , W_r в заданном диапазоне изменения параметров. Если требования реализуемы, то можно определить значения параметров генератора для получения требуемых характеристик, и обратно: по параметрам определить значения выходных характеристик.

На рис. 2 представлена зависимость амплитудного значения ударного тока от R_c , рассчитанная по полным дифференциальным уравнениям на аналоговой машине MH-14 и с помощью полинома (7). Погрешность при этом не превышает 5%. Расчет для энергии (8) в активной нагрузке также дал хорошую сходимость, где погрешность составляет не более 7% (рис. 3).

Таким образом, показанная возможность получения на основе методов планирования эксперимента зависимостей выходных характеристик от параметров синхронного импульсного генератора может широко использоваться для расчетов ударного тока, энергии в индуктивной и активной нагрузках, а также в процессе проектирования подобных машин.

ЛИТЕРАТУРА

1. В. П. Литвинов, А. В. Лоос, Э. И. Собко. Аналитическое решение уравнений переходных процессов синхронного импульсного генератора. Настоящий сборник.

2. В. В. Налимов, Н. А. Чернова. Статистические методы планирования экстремальных экспериментов. М., «Наука», 1965.

3. Г. А. Сипайлов, А. В. Лоос, Э. И. Собко, В. П. Литвинов. Синхронный импульсный генератор с высокой частотой следования импульсов. Известия ТПИ, т. 265, 1972.

4. А. И. Важнов. Основы теории переходных процессов синхронной машины. ГЭИ, 1960.

5. Г. А. Сипайлов, А. В. Лоос. К выбору демпферной обмотки ударного генератора. Известия ТПИ, т. 152, 1966.

6. И. П. Копылов, Н. Ф. Ильинский, Н. Л. Кузнецов. О применении метода планирования эксперимента к задачам анализа и синтеза электрических машчие. «Электричество», 1970, № 2.