ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВ

Том 296

1976

К ВОПРОСУ ОБ ЭЛЕКТРОПРОВОДНОСТИ И ФОТОПРОВОДИМОСТИ ПОЛИМЕРОВ 9-ВК

С. А. ЗАЙДМАН, Н. Я. ФИЛИШОВ, Д. И. СВИРЯКИН, В. П. ЛОПАТИНСКИЙ, Е. Е. СИРОТКИНА, В. И. БЕРЗИН

(Представлена научным семинаром научно-исследовательского института электронной интроскопии)

С целью изучения физических свойств полимеров поливинилкарбазола проведено исследование их электропроводности и фотопроводимости.

Для исследования были взяты вещества, полученные теломеризацией 9 — винилкарбазола /9 — ВК/ в различных растворителях и в присутствии различных инициаторов. В зависимости от условий получения теломеры имеют различные концевые группы и различную степень полимеризации (n), которая вычисляется по концевым группам.

Структурные формулы исследуемых теломеров приведены в табл. 1.

Таблица 1

	c	структура полимеров	Содержание галогена	Средняя степень полимери- зации	
		R			
Ι	CCl ₃	$-(-CH-CH_2-)_n$	— CCl _s	2,62	40
II	CCl ₃	$-(-CH-CH_2-)_n$	— Н	0,86	64
III	CCl ₃	$-(-\operatorname{CH}_{R}^{\downarrow}-\operatorname{CH}_{2}^{\prime}-)_{n}$	— Cl	1,16	62
IV	CBr ₃	$-(-CH-CH_2-)_n$	— Н	3,67	32

где

Исследуемые образцы изготавливались в виде прессованных столбиков с нанесенными на торцы металлическими электродами.

Измерение электропроводности проводилось на постоянном токе при атмосферном давлении. В зависимости от структуры концевой группы изменяется сопротивление образцов, полученных из теломеров в при-

сутствии четыреххлористого углерода. Как видно из рис. 1, максимальной темновой проводимостью обладают образцы структуры III и наименьшей — структуры II. Проводимость полимеров зависит также от передатчика цепи. Так, например, полимеры с хлорсодержащими концевыми группами по сравнению с бромсодержащими (структура IV) обладают лучшей проводимостью.

Рис. 1. Вольт-амперные характеристики для 9-ВК с различными концевыми группами.

Изменение электропроводимости с температурой для исследованных образцов носит экспоненциальный характер и подчиняется уравнению Аррениуса [1]

$$\sigma = \sigma_0 e^{-\frac{\varepsilon_0}{kT}} = \sigma_0 e^{-\frac{\Delta E}{2kT}},$$

где σ — удельная электропроводность, ом⁻¹. См⁻¹;

ε₀ — энергия активации проводимости, эв;

ΔЕ _____ ширина запрещенной зоны в собственном полупроводнике, эв;

к — постоянная Больцмана;

Т — абсолютная температура, К°.

Величина термической энергии активации для структуры II, определенная из угла наклона прямой на рис. 2, равна 0,94 эв. До температур 40—50° С электропроводность слабо зависит от температуры, что соответствует горизонтальному участку прямой на рис. 2. По-видимому, это связано с тем, что зарождение и перемещение носителей внутри полисопряженной области почти не требует энергии активации, а рост тока с повышением температуры обязан перескоковому механиз-

электропроводности для 9-ВК структуры II.

му проводимости, при котором приходится преодолевать энергетические барьеры между полисопряженными областями.

Заслуживает внимание тот факт, что высокотемпературные наклоны прямых для исследуемых структур совпадают в пределах ошибки опыта и изменяются от 0,85 до 1,1 эв.

Излучение зависимости коэффициента Зеебека от температуры показало, что с ростом температуры величина термоэлектродвижущей силы падает. Это, вероятно, можно объяснить фононным механизмом рассеяния носителей в области низких температур и возрастанием роли акустических колебаний решетки в области высоких температур.

Предварительные данные свидетельствуют о том, что исследуемые образцы имеют проводимость дырочного типа.

При излучении фотоэлектрических свойств полимеров 9—винилкарбазола главное внимание было обращено на отношение фототока к темновому току при заданных освещении и величине приложенного внешнего напряжения. Фотопроводимость исследовалась в области видимой части спектра.

Из всех структур табл. 1 наиболее чувствительной к видимой части спектра оказалась структура типа II (рис. 3). Для лучших образцов фототок возрастал на полтора порядка по сравнению с темновым.

В табл. 2 представлены экспериментальные результаты, отражающие зависимость отношения фототока к темновому току от степени полимеризации, которая находится в прямом соответствии с процентным содержанием хлора в полимере структуры II.

Содержание хлора в полимере структуры II регулировалось путем

Рис. 3. Зависимость темнового (1) и фототока (2) от напряжения для 9-ВК структуры II: 1 — темновая вольтамперная характеристика; 2 — вольт-амперная характеристика при $\Phi = 200$ лк.

T	0	5	TT	TT	TT	0	9
T	d	U	11	и	ц	d	4

S/M	0	5	10	15	20	25	30	35	45
Содержание С1, %	0	0,29	0,58	1,0	.1,2	1,4	1,7	1,95	2,23
Средняя степень полимеризации		189	94	54	45	39	32	28	24
при $\begin{array}{c} I_{\Phi}/I_{r} \\ U = 200 \text{ в,} \\ \Phi = 200 \text{ лк} \end{array}$	10	15	18	20	21	23	25	18	12,5

изменения концентрации раствора четыреххлористого углерода — S, степень полимеризации — изменением числа мономеров — M.

Из таблицы следует, что существует оптимальная степень полимеризации при которой наблюдается максимальное отношение фототока к темновому. Для этой же структуры II были исследованы кинетика фототока (рис. 4) и люкс-амперная характеристика (рис. 5).

Как видно из рис. 4, время установления стационарного значения фототока после включения света изменяется в пределах (25÷30) сек, что свидетельствует о большой инерционности подобных фотосопротивлений.

Из люкс-амперной характеристики (рис. 5) видно, что на начальном участке кривой фототок нелинейно зависит от освещенности, а далее линейно увеличивается с ростом мощности потока падающего света.

Рис. 4. Кинетика установления фототока для структуры II.

ЛИТЕРАТУРА

1. Органические полупроводники. Под ред. В. А. Каргина. М., «Наука», 1968.

эмецения концентрации раствора четырехудорастого углерода — 5 теледах полимердзации — изменением, числа мономеров — М. Иг. таблицы Слордет, что существует битимальная степень полиме въздащи при которой наблюдается максимальное отношение фототок и теувовогу. Для этой же структуры 11 были исследованы, кинетим ратотока (рис. 4) и лиокстамиериам марактеристика (рис. 5). * ак вилио но рис. 4, премя установления стационариого значение об отеха, вилио но рис. 4, премя установления стационариого значение об отеха в лиро но рис. 4, премя установления стационариого значение