### ИЗВЕСТИЯ

# ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Tom 297

# ВЛИЯНИЕ pH МИНЕРАЛООБРАЗУЮЩЕЙ СРЕДЫ НА ПЕТРОХИМИЧЕСКИЕ И ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ МАГНЕТИТОВ

#### Н. Ф. СТОЛБОВА

(Представлена научным семинаром кафедры петрографии)

Изучая геологию и минералогию Лебедского скарново-золоторудного месторождения (Горный Алтай) и используя ряд критериев, мы выделили многочисленные минеральные ассоциации, проследили смену одних другими в пространстве и во времени. Минеральные ассоциации, формирующиеся при одинаковых условиях температур (по данным гомогенизации газово-жидких включений), были объединены в стадии: доскарнового метасоматоза, скарновую стадию, стадию перекристализации, гидротермальную кварцевую и гидротермальную карбонатную (Столбова, 1970). Учитывая особенности минеральных ассоциаций, сменяющих друг друга во времени, а именно химизм замещения одних минералов другими, изменение условного потенциала ионизации у последовательно образующихся минералов, а также фН суспензий отдельных минералов и их ассоциаций, мы смогли проследить эволюцию фН постмагматического раствора от стадии к стадии (Столбова, 1970).

## Данные химического

| Магнетиты                                          | SiÓ <sub>2</sub> | $Al_2O_3$ | FeO   |
|----------------------------------------------------|------------------|-----------|-------|
| I. Скарновая стадия (среднее из пяти)              | 1,34             | 0,86      | 24,71 |
| II. Стадия перекристаллизации (среднее из четырех) | 1,00             | 0,53      | 28,63 |

#### Результаты спектрального полуколичественного

| ,                           | Содержание элементов-примесей |     |     |     |      |      |      |  |  |
|-----------------------------|-------------------------------|-----|-----|-----|------|------|------|--|--|
| Магнетиты                   | Ti                            | V   | Cr  | Ni  | Ва   | Sr   | Mn   |  |  |
| I Скарновая стадия          | 2800                          | 310 | 400 | 133 | 1500 | 1000 | 8090 |  |  |
| П Стадия перекристаллизации | 100                           | 40  |     | 60  | 200  | 1000 | 2470 |  |  |
| III Кварцевая стадия        | 50                            | _   |     | _   | 1000 | 1000 | 100  |  |  |
| IV Карбонатная стадия       | _                             | _   | -   | _   |      | 600  | 130  |  |  |

Общие ее черты таковы. К концу скарновой стадии происходит постепенное уменьшение щелочности растворов. Оно временно прекращается и даже несколько увеличивается в стадию перекристаллизации. В гидротермальную кварцевую стадию идет увеличение щелочности растворов, которое прекращается к ее концу. В конце постмагматического процесса в гидротермально-карбонатную стадию обнаруживается тенденция к нейтрализации растворов.

На всех, кроме первой, стадиях постмагматического процесса, обнаруживающих разный режим кислотности-щелочности, формируются магнетиты (Столбова, 1970). По ряду свойств эти магнетиты резко различимы (характерные их особенности представлены в табл. 2). В связи с этим возникает вопрос: влияет ли рН минералообразующей среды на химический состав магнетитов и на состав их элементов-примесей?

Чтобы ответить на поставленный вопрос, мы обратились к данным химических анализов матнетитов, к имеющимся спектральным полуколичественным анализам и рассмотрели их с учетом кислотно-основных свойств обнаруженных компонентов. Последние, как известно, определяются величинами электроотрицательности, которые приведены в работе А. Е. Поваренных (1962).

Ниже приведены табл. 1, 2 с данными химических и спектральных анализов магнетитов. Из них видно, что как петрогенные компоненты магнетитов, так и элементы-примеси в них изменяют от стадии к стадии свое количественное значение. Набор элементов-примесей изменяет еще и свой качественный состав.

Чтобы проследить количественные изменения элементов от их кислотно-основных свойств, воспользуемся графическими построениями. Расположим по оси абсцисс петрогенные компоненты, обнаруженные в магнетитах I и II, в порядке их возрастающей электроотрицательности, т. е. в порядке их убывающей основности. По оси ординат отложим величины, отражающие количественные изменения петрогенных компонентов в магнетитах I и II. Количественные изменения определяются по формуле

Таблица 1

| Fe <sub>2</sub> O <sub>3</sub> | TiO <sub>2</sub> | CaO   | MgO   | MnO  | $V_2O_3$ | Cr <sub>2</sub> O <sub>3</sub> | Сумма |
|--------------------------------|------------------|-------|-------|------|----------|--------------------------------|-------|
| 70,34                          | 0,07             | 0,067 | 0,072 | 0,18 | 0,02     | 0,046                          | 97,65 |
| 68,16                          | 0,06             | 0,23  | 0,78  | 0,19 | 0,017    | 0,022                          | 98,78 |

Таблица 2 анализа магнетитов в вес % 100,000

| магнетитах (среднее из пяти) |     |    |      |       |        |      |      |       |     |    |
|------------------------------|-----|----|------|-------|--------|------|------|-------|-----|----|
| Co                           | Ga  | Ge | Си   | Zn P  | b d    | As   | Ag   | W     | Bi  | Zr |
| 100                          | 100 | 33 | 1600 | 566   | 332    | _    |      | _     | , _ | _  |
| 100                          | 80  | 40 | 900  | 2400  | 40     | -    | _    | _     | 20  | 20 |
| 50                           | -   | 50 | 2500 | 1500  | HERE C |      | a in |       | _   | _  |
| 500                          | -   | 60 |      | 42500 | 130    | 4600 | 230  | 0 100 | 101 | _  |

. Заказ 8588 55

$$P_i^{\mathrm{II}} - P_i^{\mathrm{I}} \left| \begin{array}{c} P_i^{\mathrm{II}} + P_i^{\mathrm{I}} \\ \hline 2 \end{array} \right|$$

где  $P_i^{\rm I}$  и  $P_i^{\rm II}$  — содержания і-го элемента в магнетите I и магнетите II соответственно.

Зависимость, получившаяся на графике 1, свидетельствует о том, что в магнетите II по отношению к магнетиту I больше сильных оснований, меньше слабых. Это может указывать соответственно на большую активность этих компонентов в растворе и, следовательно, на возрастающую щелочность раствора.

, Рассмотрим в той же зависимости изменения содержаний элементов-примесей в магнетите I и II. Для этого на графике по оси абсцисс расположим элементы-примеси в порядке их возрастающей электроотрицательности, а по оси ординат отложим величины количественных изменений содержаний элементов-примесей магнетита II относительно магнетита I. Получившаяся зависимость представлена на прафике 2. Она так же, как и предыдущая, указывает на возрастающую щелочность раствора.

Результаты анализа двух прафиков аналогичны и хорошо согласуются с тем положением, что формирование магнетита II происходит в

условиях возрастающей щелочности.

Попробуем в таких же зависимостях проследить изменение содержаний элементов-примесей в магнетите III относительно магнетита II и матнетита IV относительно магнетита III. Они представлены на графиках 3 и 4.

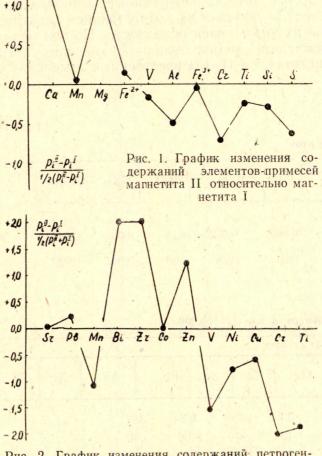



Рис. 2. График изменения содержаний петрогенных компонентов магнетита II относительно магнетита I

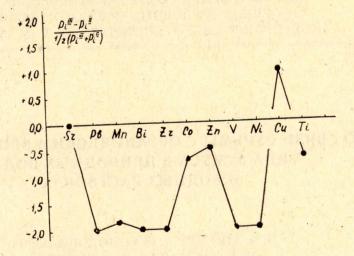



Рис. 3. График изменения содержаний элементовпримесей магнетита III относительно магнетита II

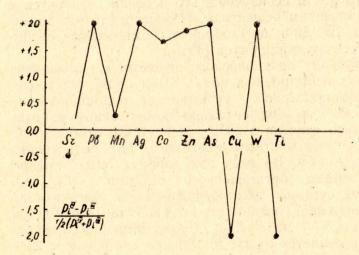



Рис. 4. График изменения содержаний элементов-примесей магнетита IV относительно магнетита III

Изменения содержаний элементов-примесей, как видно из графиков, таковы, что свидетельствуют об увеличении роли компонентов с более кислотными свойствами во время формирования магнетита III и об их уменьшении при формировании магнетита IV. Это также хорошо согласуется с другими данными об изменении режима рН в сторону увеличения щелочности в кварцевую стадию и ее уменьшении в карбонатную.

Таким образом, первая попытка проследить влияние рН минералообразующей среды на особенности химического состава и состава элементов-примесей оказалась положительной. Из изложенного вытекает, что изменение режима рН в сторону увеличения щелочности приводит к увеличению содержания в решетке минерала элементов с более основными свойствами, к задержке в них элементов-примесей также с более основными свойствами и наоборот.

#### ЛИТЕРАТУРА

1. А. Е. Поваренных. Об использовании электроотрицательности элементов в кристаллохимии и минералогии. Записки украинского отделения Всесоюз. минер. общества. Вып. 1, Киев, 1962.

2. Н. Ф. Столбова. Минералогия и генезис Лебедской золотоносной скарновой зоны. Диссертация на соиск. уч. степени кандидата геол.-мин. наук. Томск, ТПИ, 1970.