ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 301

1975

РАБОТА СИНУСОИДАЛЬНОГО ИСТОЧНИКА НАПРЯЖЕНИЯ НА ДУГУ В ВОДЕ

Б. А. ФРАНКОВСКИЙ

(Представлена научным семинаром кафедр электрических машин и общей электротехники)

Выбор того или иного источника энергии для нестационарных электропидравлических установок определяется его мобильностью и техническими возможностями с точки зрения получения необходимых величин энергии, частоты повторения генерируемых импульсов и гидродинамических характеристик упругой волны давления.

Существующие электрогидравлические установки, предназначенные для возбуждения сейсмических колебаний, создачные на основе конденсаторных батарей имеют длительность импульса тока в дуге порядка 10⁻⁴ сек. При питании дуги от ударного генератора длительность горения дуги возрастает на порядок, благодаря чему следует ожидать повышенную амплитуду составляющих низких частот (10÷300 гц) в частотном спектре генерируемых упругих импульсов давления.

Эффективность преобразования электромагнитной энергии такой установки будет тем выше, чем больше будет процент составляющих низких частот в сформированной упругой волне давления.

Процесс электрического пробоя жидкости и формирование дугового канала, с одной стороны, определяются напряжением генератора

$$U = 4.44 \text{ w}_{1} \text{k}_{w1} f \Phi$$
, (1)

где f — частота синусоидального напряжения генератора;

kw1 — обмоточный коэффициент статорной обмотки;

Ф — основной поток машины.

w1 — количество витков статорной обмотки генератора.

Этот процесс не представляет затруднений лишь в случае применения высоких напряжений.

С другой стороны, наибольшая амплитуда тока в дуге

$$I_{y_{\pi}} = \frac{1.8 \cdot 1.05 \, V \, 2 \, U}{\mathbf{x}_{y_{\pi}}} \tag{2}$$

имеет место при наименьшем значении ударного индуктивного сопротивления генератора

$$\mathbf{x}_{\mathbf{v}\mathbf{I}} = \boldsymbol{\omega} \, \mathbf{k} \, \lambda'' \, \mathbf{w}_1^{\, \mathbf{2}} \,, \tag{3}$$

- где λ" эквивалентная проводимость генератора в сверхпереходном режиме с учетом влияния контуров обмотки возбуждения и демпферной системы ротора;
 - угловая частота э. д. с. генератора;
 - k коэффициент пропорциональности.

Величина вводимой энергии в дугу при согласованном сопротивлении R_д(t) определяется квадратом тока

 $W_{\mu} = \int_{0}^{t} i_{y\mu}^{2} \cdot R_{\mu} dt.$

(4)

Таким образом, ударные генераторы для электрогидравлических установок необходимо проектировать на большие токи, что в конечном счете достигается за счет снижения числа витков обмотки статора. Последнее обусловливает снижение напряжения генератора, следовательно, появляется необходимость предварительного инициирования межэлектродного водного промежутка вспомогательными средствами. Наиболее эффективно инициирование дуги осуществляется с помощью взрывающихся проволочек (проволочных мостиков). Ударный генератор, включенный на взрывающуюся проволочку, до момента ее взрыва накапливает электромагнитную энергию в полях рассеяния статорной обмотки. С момента образования дуги генератор передает дуге как электромагнитную энергию полей рассеяния, так и преобразованную кинетическую энергию ротора.

Регулирование длительности и величины вводимой энергии в дугу, инициированную проволочкой, можно осуществлять как выбором геометрических параметров взрывающейся проволочки, так и изменением начального угла включения генератора на проволочку.

Критерием оптимальной работы ударного генератора на проволочку являются наибольшие значения величин амплитуды и длительности импульса сжатия. Известно, что импульс сжатия формируется под действием двух факторов [1, 2]: непосредственно от электрического взрыва проволочки и дуговой стадии.

В настоящей работе вопрос оптимизации схемы решается эмпирическим путем — методом подбора диаметра и длины проволочки и изменением начального угла включения генератора.

При проведении экспериментов источником синусоидального напряжения служил трансформатор на 560 ква, питаемый от городской элекпросети. Используемый источник энергии служит моделью энергетического блока с ударным генератором, так как имеет одинаковую частоту и подобие форм напряжения и тока.

Принципиальная электрическая схема установки представлена на рис. 1. Электроды, соединенные проволочкой 2, помещены в специальный бак 3, заполненный водопроводной водой. На расстоянии 100 мм

Рис. 1. Принципиальная электрическая схема экспериментальной установки: 1 — управляемое коммутирующее устройство; 2 — взрывающаяся проволочка; 3 — бак, 4 датчик давления, 5 — шунт, 6 — делитель напряжения; 7 — коаксиальный измерительный кабель; 8, 9 — первая и вторая пара пластин осциллографа С1-16; 10 — осциллограф С1-29

86

1.

от центра проволючки нормально к ее оси установлен датчик давления 4. От источника синусоидального напряжения (U=220 в и f=50 гц) подается на проволючку одна полуволна «экстра» тока с помощью управляемого вентильного коммутирующего устройства 1.

Система регистрации содержит осциллограф 8 и 9 типа CI-16, предназначенный для осциллографирования тока и напряжения; осциллограф CI-29 10 для регистрации импульса давления; передающий тракт, выполненный экранированным коаксиальным кабелем РК-75 7, шунт 5 типа 75 ШСМ (75 мв, 150 а); делитель напряжения 6, выполненный на безындуктивных сопротивлениях ТВО с коэффициентом деления делителя K=0,0034 и датчика давления 4.

В датчике давления в качестве чувствительного элемента использовалась таблетка титаната бария диаметром 8 мм и толщиной 4 мм. Отражение упругой волны от торцовых граней цилиндрического пьезоэлемента исключалось путем соединения его с длинным стержнем такого же сечения и с таким же акустическим сопротивлением, как и у чувствительного элемента. Пьезоэлемент и стержень помещены в -латушную трубку, которая служит каркасом и экраном от электромагнитных наводок при взрыве проводника.

Исследование влияния параметров проволочки с целью выявления связи энергетических характеристик (W_n — полная энергия, выделившаяся в проволочке, $\partial \mathcal{H}$; W_v — объемная плотность энергии, $\kappa \partial \mathcal{H}/cM^3$) с пидродинамической характеристикой импульса давления (P_m — амплитуда импульса давления) было проведено для медных проволочек диаметром 0,51; 0,69; 0,83 мм при изменении их длины в пределах $20 \div 110$ мм. При анализе влияния начального угла включения в пределах от 0 до 90° использовалась проволочка диаметром 0,72 мм и длиной 32 мм.

Эксперименты показали, что взрыв проволочки диаметром 0,51 и 0,69 мм генерирует импулыс сжатия меньшей амплитуды, чем взрыв проволочки диаметром 0,83 мм, когда взрыв происходит в максимум тока. Результаты эксперимента для проволочек диаметром 0,72 мм и 0,83 мм сведены в табл. 1 и 2, где l_n — длина проволочки, мм; d_n — диаметр проволочки, мм; I_m — амплитуда импульса тока, ка; $t_в$ — время накопления энергии в проволочке до взрыва, сек; W_n — полная вводимая энергия в проволочку, $\partial \kappa$; $W_в$ — энергия, накопленная в проволочке до взрыва, $\partial \kappa$; W_v — объемная плотность энергии, $\kappa \partial \kappa / c m^3$, Ψ — начальный угол включения синусоидального источника напряжения на проволочку, град; P_m — амплитудная величина упругого импульса давления, относительные единицы (от. ед.).

l _n , <i>мм</i>	I _m , ка	t _b · 10 ⁻³ , сек	W _n , кдж	W ь, кдж	₩ _v , кдж/см	Р _т , о.т ед.				
					and such and	a handlik				
30	3,85	6,00	2,511	1,792	150	3,10				
40	4,40	5,50	2,250	1,733	93	3,55				
50	4,51	5,50	2,097	1,638	62	2,49				
60	4,18	4,75	2,004	1,746	48	1,85				
70	4,51	4,50	2,070	1,778	55	1,70				
80	4,40	5,00	2,240	1,809	54	1,45				
90	4,72	5,00	2,432	1,815	52	1,30				
100	4,62	4,50	2,598	1,801	47	1,30				
110	4,50	5,50	2,704	1,950	38	1,30				
					and the second s					

Таблица 1

87

0,00 1 3

пинена и статор со чем зо и слада Таблица 2

I _m ,	t _b · 10 ⁻³	Wn, кдж	Wь,	₩ _v ,	ф	Р _т ,
ка	сек		кдж	кдж/см	град	от. ед.
3,20	5,25	2,774	0,429	210	18	1,83
3,33	4,60	1,984	0,212	155	36	2,97
3,33	5,00	1,720	0,284	138	45	2,71
3,24	5,30	1,560	0,236	122	54	2,34
3,15	6,0	1,269	0,227	98	72	1,74

Рис. 2. Осциллограммы тока и напряжения взрыва медной проволочки (ln=32 мм и dn=0,72 мм) при начальном угле включения синусоидального источника в 36°

На рис. 2 приведены характерные осциллограммы тока и напряжения при взрыве медных проволочек (ln=0,72 мм, dn=32 мм) и угле включения источника 36°. Осциллопраммы тока и напряжения для друпих длин и диаметров взрываемой проволочки носят аналогичный характер и не приводятся. По осциллограммам тока и напряжения можно зафиксировать 4 стадии развития процесса: накопление энергии в проволочже, взрыв, резкое снижение тока и дуговую стадию.

Накопление в проволочке энергии, необходимой для фазового превращения, происходит в среднем за 5.10-3 сек. К концу этого времени происходит разрыв проводника на мелкие части, появляются локальные места с уменышенной проводимостью — ток в проводнике плавно падает. В местах с уменьшенной проводимостью идет интенсивное выделение энергии. При достижении энергии порогового значения Wnop, необходимого для фазового превращения в локальных местах проводника, происходит взрыв проволочки. Как видно из осциллограммы рис. 2, взрыв проволочки сопровождается резким спадом тока до некоторого МИНИМАЛЬНОГО ЗНАЧЕНИЯ, БЛИЗКОГО К НУЛЮ, ЧТО СООТВЕТСТВУЕТ МГНОВЕННОму уменьшению проводимости.

Резкий спад тока в цепи с большой индуктивностью сопровождается броском э. д. с. самоиндукции (рис. 2 нижняя кривая), превосходящей более чем в 4 раза амплитудное значение напряжения источника. Сравнительно небольшим значением э. д. с., не превышающем 1,5 кв, пробиваются межэлектродные промежутки до 150 мм.

Дуговая стадия характеризуется постоянным значением напряжения (рис. 2) и образованием паро-газового пузыря — источника упругой волны сжатия, размеры которого зависят от величины и длительности протекающего тока.

Энергия, выделившаяся в проволочке W_n, объемная плотность энергии W_v и развиваемое давление P_m в функции длины проволочки l_n и начального угла включения Ψ представлены соответственно на рис. 3 и рис. 4. Кривые давления P_m имеют явно выраженный экстремум. На рис. 3 экстремум определяется оптимальной длиной проволочки, равной 40 мм, а на рис. 4 определяется начальным углом включения 36° при фиксированных геометрических параметрах проволочки.

Рис. 3. Энергия, выделившаяся в проволочке (кр. -1), объемная плотность энергии (кр-2) и развиваемое давление (кр-3) в функции от ее длины при постоянном диаметре и $\psi=0$. 1 — удельная энергия сублимации меди

Осциллопрамма импульса давления изображена на рис. 5. На рис. 6 показаны характерные изменения сопротивления взрывающихся проволочек во времени, полученные обработкой осциллограмм тока и напряжения.

11

Кривые сопротивлений взрывающихся проволочек при различных начальных углах включения синусоидального источника имеют индентичный вид. В стадии накопления энергии сопротивление проволочек из-

89

меняется незначительно и его можно считать постоянным. В момент взрыва проводника сопротивление межэлектродного промежутка возрастает более чем на порядок. При установившейся дуговой стадии минимум сопротивления выше сопротивления проволочки в режиме накопления. К концу импульса тока сопротивление резко возрастает.

Таким образом, проведенные эксперименты показали необходимость согласования внутреннего сопротивления источника питания с сопротивлением межэлектродного промежутка в дуговой стадии.

Рис. 6. Изменение сопротивления взрываю щейся проволочки во времени: $1 - d_{\pi} = 0.83$ мм, $l_{\pi} = 40$ мм, $\psi = 0$, $2 - d_{\pi} = 0.72$ мм, $l_{\pi} = -32$ мм, $\psi = 36^{\circ}$

ЛИТЕРАТУРА

В. А. Коротков, Г. А. Несветайлов. «Физика горения и взрыва», 1970, № 2, т. 6.
2. F. Hamnonn. Zeischrift für Angewandte Physik. 31, 2, 1971.

5

3