Том 302

1976

ИССЛЕДОВАНИЯ ПО АМАЛЬГАМНО-ПОЛЯРОГРАФИЧЕСКОМУ ПОВЕДЕНИЮ МАРГАНЦА И ОПРЕДЕЛЕНИЕ ЕГО В АЗОТНОЙ КИСЛОТЕ И РЯДЕ СОЛЕЙ

И. П. МАМОНТОВА, А. А. КАПЛИН

(Представлена научно-методическим семинаром кафедры физической и коллоидной химии)

В ряде работ [1—3] изучено электрохимическое поведение марганца. Методом амальгамной полярографии с накоплением определена растворимость марганца в ртути, равная $(1,2\pm0,4)\cdot 10^{-3}$ вес. % при 25° С. Эти данные хорошо совпадают с результатами, полученными другими методами. В работе [1] изучена природа марганцевых амальгам методом амальгамной полярографии с накоплением на стационарной ртутной капле. Авторы подвергали амальгаму марганца анодному окислению в одних случаях сразу после получения, в других — после выдерживания амальгамы в контакте с раствором. Обнаружено, что при старении марганцевой амальгамы, находящейся в контакте с раствором, исчезает пик анодного окисления марганца при —1,25 в и появляются новые пики при более положительных потенциалах. По мнению авторов, это явление объясняется образованием соединения Mn с Hg. Но авторы [5] не подтверждают этого предположения; ими показано, что в чистом растворе после старения амальгамы наблюдается только анодный пик окисления Мп при $\varphi = -1,3 \ \beta$ (н.к.э.), а возникновение пиков при более положительных потенциалах обусловлено не образованием интерметаллического соединения Мп с Нg, а цементацией марганцем примесей более электроположительных металлов (например, Zn, Pb) из раствора. Восстановление марганца до металла удается провести в основных растворах с хлоридом щелочного металла ($\epsilon_{1/2}$ =-1,45 до-1,60 в), а также в присутствии некоторых лигандов ($\epsilon_{1,2} = -1,6$ до -1,7 в). В кислых растворах восстанавлению марганца мешает выделение водорода. В ацетатно-буферных растворах Мп не восстанавливается. В работе [6] изучена возможность использования стационарного и вращающегося Pt электрода для предварительного накопления Мп в виде МпО2 на фоне боратного и аммиачного буферных растворов. При растворении МпО2 на полярограмме наблюдается четкий пик, потенциал его зависит от рН фона, высота его пропорциональна концентрации Мп в растворе в интервале 10^{-6} — 10^{-5} М (φ_9 =—1,8 в при рН 7). Определению не мешают щелочные металлы, Zn, Co, Cd, Cu; мешают Fe, Al, Pb. Изучение марганца на стационарном капельном и пленочном ртутных электродах затруднено вследствие малой растворимости марганца в ртути и легкой окисляемости амальгамы марганца. В работе [7] найдены условия для определения субмикрограммовых количеств Мп в присутствии 10^{-6} % примесей Cu, Pb, Cd, Zn и Ni, в присутствии ионов Fe⁺², не превышающих концентрацию марганца более чем в 50 раз. Работ по изучению амальгамно-полярографического поведения Мл и определению его в особо чистых объектах сравнительно немного. Нами начаты систематические исследования в этом направлении. В табл. 1 приведены характеристики анодных пиков марганца на ряде фонов. Рабочим электродом являлся ртутный пленочный электрод, электродом сравнения служил насыщенный каломельный электрод. В качестве стандартных растворов марганца использовались водные растворы MnCl₂ или MnSO₄ различной концентрации. Получены зависимости высоты анодного пика Мп от потенциала и времени электролиза. Зависимость высоты анодного пика Мп от концентрации его в растворе представляет собой прямую линию, проходящую через начало координат, что позволяет использовать данный метод в аналигических целях. Разброс точек, начинающийся с концентрации 2,5 · 10⁻⁻⁴ М, связан, вероятно, с достижением предела растворимости марганца в ртути.

Из зависимости величины анодного тока от концентрации ионов Мп в растворе рассчитана растворимость Мп в ртути, равная $2,0\cdot 10^{-3}$ вес. % при 23° С. Для расчета коэффициента диффузии Мп в ртути по бросковым токам использована методика Стромберга и Захаровой. Рассчитанная величина коэффициента диффузии Мп в ртути $1,3\cdot 10^{-5}$ см²сек $^{-1}$, как и величина растворимости Мп в ртути, совпадает с литературными дан-

ными.

Таблица 1 Анодные пики Мп на различных фонах. Условия опыта: V p-pa=4 мл; ϕ =-1,8 θ ; τ 9=5 мин; $C_{\rm Mn}$ =3,3·10 7 ε ; S=4·10 8 a/мм

№ п. п.	Фон	$i \cdot 10^{-6}$ (a)	φ _{Mn} (в)	σ (MB)
1	0,1 M NaCl	1,32	-1,43	61,0
2	1 M NaCl	1,86	-1,43	66,0
3	1 M KCl	0,84	-1,41	100,0
4	1 M KNO ₃	пики	не получены	
5	1 M KSCN	0,88	-1,43	78,0
6	1 M Na ₄ P ₂ O ₇	пики не полу- чены		
7	0,1 M BaCl ₂	0,96	-1,43	66,6
8	1 M KOH	0,36	-1,43	132,0

На основе проведенных исследований нами предлагаются методики определения Mn в HNO_3 о. ч. и в ряде солей.

Определение Mn в HNO₃

Марганец в азотной кислоте находится в виде $Mn(NO_3)_2 \cdot 6H_2O$ с $t_{\text{кип}}$ 129,4°C, поэтому при выпаривании навески азотной кислоты температуру не следует поднимать выше 100° С, чтобы избежать потерь марганца. Навеску HNO_3 следует выпаривать досуха, так как выделяющийся на электроде водород будет маскировать анодные пики марганца. Предлагаемая методика основана на выпаривании азотной кислоты и последующем полярографировании марганца на фоне 0,1 N раствора NaCl. В имеющейся в лаборатории азотной кислоте о. ч. марганец не обнаружен. Минимально определяемая концентрация Mn с относительным стандартным отклонением 0,33 будет $1,14 \cdot 10^{-7}$ % при навеске 5 ϵ . Дли-

тельность анализа 2,5 часа. Совместно с Мп в азотной кислоте возможно определение Zn, Cd, Pb и Cu.

Определение Мп в иодате лития

Методика определения Mn в LiIO $_3$ основана на разложении навески (0,1 г) в 3 мл HCl без нагревания. Затем проводится упаривание раствора при 130°С, добавляется 4 мл H $_2$ O и проводится полярографическое определение Mn на полученном фоне. Марганец в LiIO $_3$ не обнаружен. Чувствительность методики 1,27·10 $^{-5}$ % со стандартным отклонением 0,33. Длительность анализа 2 часа.

Определение Мп в арсенате цезия и фосфате калия

Обе соли хорошо растворимы в воде, но растворы этих солей нельзя использовать непосредственно в качестве фонов для полярографического определения Mn, так как pH образующейся среды равно 5. В результате наших исследований показано, что полярографическое определение Mn может проводиться только в щелочной среде при pH = 10 ввиду мешающего влияния водорода. Минимально определяемая концентрация Mn в арсенате цезия и фосфате калия $1,26 \cdot 10^{-5}$ % из навески 0,05 ε , длительность анализа 1,5 часа. В фосфате калия Mn не обнаружено, результаты анализа арсенида цезия сведены в табл. 2.

. Таблица 2 Статистическая обработка анализа CsH_2AsO_4 на содержание Мп

n	\overline{x}_{cp}	$\Sigma x - \overline{x}_{cp} ^2$	$S\overline{x}_{cp}$	$\varepsilon = S\overline{x} t_{\alpha}$	±ε%
4	$2,21\cdot10^{-5}$ %	0,5296	0,21	0,588	26,7

ЛИТЕРАТУРА

- 1. W. Kemula, L. Galus. Roczn. Chem. 36, № 7—8, 1223—1238, 1962.
- 2. А. А. Ланге, С. П. Бухман, М. Т. Козловский. Труды института хим. наук Академии наук Казахской ССР, т. 21, 93—102, 1969.
- 3. А. А. Ланге, А. В. Ширинских, С. П. Бухман. Изв. АН КазССР, сер. хим. № 2, 68—70, 1970.
- 4. И. Е. Краснова, А. И. Зебрева. «Электрохимия», т. II, вып. I, стр. 96, 1966.
 - 5. И. Е. Краснова, А. И. Зебрева. ЖФХ, 38, № 6, 1675—1676, 1964.
- 6. Hrabankowa E., Dolezal J., Mazin V. «J. Electroanalyt. Chem.», 22, № 2, 195—201, 1969.
 - 7. V. F a no. «Microchemical Journal», 15, № 3, 422-427, 1970.