Tom 126

ВЛИЯНИЕ ТЕМПЕРАТУРЫ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТАЗОВЫХ УГЛЕЙ НА ВЫХОД И СОСТАВ НИЗШИХ ФЕНОЛОВ

н. м. смольянинова, в. с. швед

(Представлена профессором доктором И. В. Геблером)

При термической переработке твердых топлив решающее влияние на выход и состав фенолов оказывают температурные условия процесса. Учитывая большой спрос химической промышленности на низкокилящие фенолы, представляет интерес исследование в области нахождения температурных условий процесса, обеспечивающих наибольшие выходы и оптимальный состав фенолов, полученных при пиролизе малометаморфизированных углей типа газовых, которые обладают большим химическим потенциалом.

Настоящая работа посвящена исследованию влияния температуры нагрева на выход и состав фенолов, получаемых при термической переработке газового угля Ленинского месторождения Кузбасса.

С целью получения необходимого для исследования количества фенолов была сконструирована укрупненная лабораторная установка, состоящая из печи для пиролиза емкостью около 15 кг угля и системы улавливания смолы, включающая холодильник и электрофильтр. Конструкция печи изображена на рис. 1.

Опыты проводились при температурах стенки камеры 600, 700 и 800°, при этом определялись выходы кокса, смолы, пирогенетической воды и газа (табл. 1).

Таблица 1 Выходы продуктов пиролиза в % на сухой уголь

	Te	Температура опыта, °С					
Продукты	600	700	800				
Кокс	67,71	65,52	64,00				
Смола	6,54	4,79	4,46				
Пирогенетическая влага		1,12	2,31				
Газ — потери	25,75	28,57	29,23				

В табл. 2 представлена характеристика смолы и ее групповой состав, определенный по методу Стадникова [1].

Из приведенных таблиц следует, что с повышением температуры термической переработки выход смолы уменьшается, а ее состав изме-

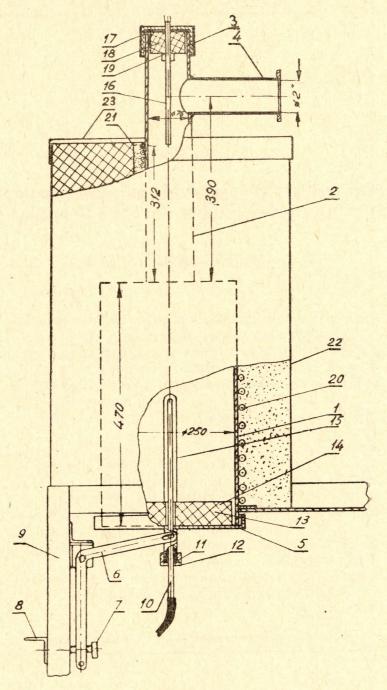


Рис. 1. Лабораторная печь для пиролиза угля: 1 — корпус камеры коксования; 2 — пиролизная камера; 3 — верхняя крышка; 4 — штуцер; 5 — нижняя крышка; 6 — рычаг; 7 — прижимной винт; 8 — уголок; 9 — стойка; 10, 16 — термопары; 11 — пробка из тефлона; 12 — накидная гайка; 13 — изоляционный кирпич; 14 — железная пластинка; 15 — чехол для термопары; 17 — прокладка; 18 — теплоизоляция; 20, 21 — электронагреватели печи и пиролизной камеры; 22 — кожух.

няется в сторону уменьшения содержания нейтральных масел, органических оснований, фенолов и увеличение содержания «свободного углерода» и асфальтенов, что свидетельствует о протекании процессов термической деструкции компонентов низкотемпературной смолы, сопровождающихся, наряду с реакциями крекинга, также реакциями конденсации и полимеризации.

Таблица 2

	Температура опыта, °С					
Показатели свойств смолы	600	700	800			
Содержание влаги, %	5,07	3,67	5,10			
Удельный вес, г/ем ³	1,090	1,120	1,135			
Групповой состав в % на безводную		The second				
смолу:						
Свободный углерод	5,66	13,95	13,60			
Фенолы	14,12	10,00	2,34			
Органические основания	2,67	1,86	1,18			
Карбоновые кислоты	0,24	0,01	0,01			
Асфальтены	11,33	15,18	27,70			
Парафины	0,11	0,02	следы			
Нейтральные масла + полимеры	65,87	58,98	55,17			

Перед извлечением фенолов образцы смолы предварительно подвергались разгонке (отбиралась широкая фракция до 340°) с целью отделения пека.

Выделение фенолов из широкой фракции проводилось 13%-ным раствором NaOH по общепринятой методике. Причем особое внимание обращалось на возможно более полное извлечение фенолов путем разложения пиридинфеноксидов 30%-ной серной кислотой, а также на извлечение водорастворимых фенолов из водных растворов серным эфиром.

Выход фенолов в пересчете на безводную смолу составил при 600° — 18,3%; при 700° — 14,3% и при 800° — 2,60%, то есть с повытаблица 3

	Температура, °С								
	60	00	70	00	8	00			
Франции	Выход фракции в %								
Фракции	на сы- рые фенолы	на без- водную смолу	на сы- рые фенолы	на без- водную смолу	на сы- рые фенолы	на без- водную смолу			
еноль но-крезольная (до	Listina in the state of the sta		TELES!						
210°C)	47,50	8,70	46,90	6,70	71,50	1,89			
Ксиленольная (210—230°С)	12,70	2,33	13,70	1,96	4,35	0,11			
Высшие фенолы (230—					Part I	1			
260°C)	7,80	1,42	6,98	1,00	4,46	0,11			
Кубовый остаток	32,00	5,85	32,42	4,94	19,69	0,52			
Итого	100,00	18,30	100,00	14,30	100,00	2,63			

Таблица 4

	Температура пиролиза, °С											
	600				700			800				
Фолици	выход				выход				выход			
Фракции	2	% на фрак- цию	% на смолу	n_D^{35}	г	% на фрак- цию	% на смолу	n_D^{35}	2	% на фрак- цию	% на смолу	n_D^{35}
Фенольная '84,7—87,0°)	10,58	21,70	1,89	1,5389	6,87	27,22	1,83	1,5389	6,33	43,60	0,825	1,5389
Промежуточная (98—90°)	2,87	5,89	0,51	1,5370	_	_		_	0,88	6,07	0,115	1,5415
О-крезольная (90—99°)	5,31	10,88	0,95	1,5380	5,42	21,43	1,44	15,380	1,69	11,69	0,223	1,5366
М-п-крезольная (99—102°)	14,44	29,52	2,56	1,5339	6,40	25,28	1,69	1,5339	2,12	14,60	0,275	1,5343
Остаток (ксиленолы)	14,23	29,10	2,53	_	5,80	22,91	1,53	_	2,96	20,42	0,385	_
Потери	1,42	2,91	0,26		0,80	3,16	0,21	_	0,52	3,58	0,067	_
Итого	48,85	100,0	8,70		25,29	100,0	6,70	_	14,5	100,0	1,89	_

шением температуры пиролиза с 600 до 800° выход фенолов снизился

почти в семь раз.

Полученные «сырые» фенолы были разогнаны (с целью предварительного отделения низкокипящих фенолов от высококипящих) из колбы Вюрца на три фракции: фенольно-крезольную, ксиленольную

и высших фенолов. Результаты разгонки приведены в табл. 3.

Данные табл. 3 показывают, что выход низших фенолов (отгон до 230°) получается наибольшим при температуре 600° и превышает таковой при обычном процессе коксования более чем в 5 раз. После очистки от смолистых и азотистых веществ, проводившейся по методу В. А. Ланина и Н. Д. Эдемской [2], фенольно-крезольная фракция подвергалась четкой ректификации на лабораторной колонке с восемнадцатью теоретическими тарелками. Ректификация проводилась в вакууме, при остаточном давлении 20 мм рт. ст. при этом отбирались узкие фракции, для которых определились коэффициенты преломления.

На основе свойства аддитивности коэффициента преломления ориентировочно определилось количество важнейших компонентов в сме-

сях (узких фракциях) по формуле [3].

$$V_2 \approx 100 \frac{n_{1.2} - n_1}{n_2 - n_1}.$$

Полученные результаты приведены в табл. 4 и 5.

Из данных табл. 4 видно, что с повышением температуры пиролиза угля выход фенольной фракции как в расчете на исходную фракцию, так и в расчете на смолу закономерно увеличивается с 21,7% при 600° до 43,6% при 800°, а выход крезолов уменьшается с 29,52 до 14,6% соответственно. Однако, как следует из табл. 5, где приведены выходы

Таблица 5

	60	0	70)()	1 80	00	Выход, %	
Компоненти		на смолу						
Компоненты	на фракцию	на смолу	на фракцию	на смол у	на фракцию	на смолу	в производ- ственных условиях	
Фенол .	20,10	1,75	20,20	1,35	43,60	0,825	0,314	
О-крезол	10,20	0,89	20,90	1,40	8,75	0,165	0,232	
М-крезол	14,40	1,25	16,40	1,10	14,87	0,261	0,180	
П-крезол	10,60	0,92	9,10	0,61	5,73	0,108	0,108	

низших фенолов в пересчете на смолу и исходную фракцию, абсолютный выход фенола при 600° более чем в 5 раз выше, чем в производственных условиях (имея в виду коксование обычной шихты), а выход крезолов в 4—7 раз больше.

Повышение температуры процесса с 600 до 800° в данных условиях приводит к сокращению выхода фенола более чем в два раза, а изомеров крезола в 6—9 раз.

Проведенное исследование показало, что оптимальной температурой для получения высоких выходов низших фенолов и особенно крезолов является температура 600°.

Полученные результаты могут быть использованы при обосновании технологического режима существующих установок полукоксования, а также будут полезны при нахождении оптимального режима пиролиза.

ЛИТЕРАТУРА

1. Г. Л. Стадников. Анализ и исследование углей. Изд. АН СССР, 1936. 2. В. А. Ланин и др. Отчет за 1955 г. Фонды ИГИ, Госэкономсовета. 3. Б. В. Иоффе. Рефрактометрические методы химии. Госхимиздат, 1960.